Skip to main content

Lifetime Expectancy of Lithium-Ion Batteries

  • Chapter
  • First Online:
Micro-Optics and Energy

Abstract

The transition from fossil fuels to renewable energy sources requires reliable energy storage technologies. Lithium-ion batteries have become the leading energy storage technology in many sectors due to their superior properties. However, for being fully compatible with alternative technologies, there are still obstacles to overcome. The most urgent requirements are cost reduction, accompanied by an increase in battery life. This chapter gives a brief introduction into the working principle of lithium-ion batteries, the most common commercially available cathode materials lithium cobalt oxide (LCO), nickel cobalt manganese oxide (NMC), lithium manganese oxide (LMO) and lithium iron phosphate (LFP) and the anode materials hard carbon and graphite. It summarises the most recent developments in applications of lithium-ion batteries, the accompanying new requirements and operating conditions.

Moreover, a literature review of studies investigating the capacity degradation is included and compared in terms of the influence of operating conditions on the lifetime of lithium-ion batteries for different chemistries. The results indicate that the NMC/hard carbon battery performed best when evaluating the cycling, the LFP/graphite batteries are more stable in terms of calendar ageing. Moreover, increased temperature seems to be the most detrimental factor for almost all chemistries for both cycling and storage although the critical temperature differs. Finally, the most recent developments and prospects for new lithium-ion battery materials and their impact on capacity and degradation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2010) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  2. Bloomberg NEF (2018) Cumulative global EV sales hit 4 million. https://about.bnef.com/blog/cumulative-global-ev-sales-hit-4-million/. Visited 20 May 2019

  3. Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 89:292–308

    Article  Google Scholar 

  4. C Shahan (2015) World’s first all-electric battery-powered ferry. Clean Technica. https://cleantechnica.com/2015/06/13/worlds-first-electric-batterypowered-ferry/. Accessed 07 May 2019

  5. Corvus Energy World’s first all-electric car ferry. Corvus Energy. https://corvusenergy.com/marine-project/mf-ampere-ferry/. Accessed 07 May 2019

  6. Spector J (2019) AES completes record-breaking solar and battery plant on Kauai. Greentech Media. https://www.greentechmedia.com/articles/read/aes-completes-its-recordbreaking-solar-and-battery-plant-on-kauai#gs.gst76r. Accessed 07 June 2019

  7. Julien C, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries. Springer, Cham

    Book  Google Scholar 

  8. Rahn C, Wang C (2013) Battery system engineering. Wiley, West Sussex

    Book  Google Scholar 

  9. Besenhard J (2011) Handbook of battery materials. Wiley-VCH, Weinheim

    Google Scholar 

  10. Ogura K, Kohle M (2017) Battery technologies for electric vehicles. In: Electric vehicles: prospects and challenges. Elsevier, Cambridge, pp 139–167

    Chapter  Google Scholar 

  11. Perner A, Vetter J (2015) Lithium-ion batteries for hybrid electric vehicles and battery electric vehicles. In: Advances in battery technologies for electric vehicles. Elsevier, Amsterdam

    Google Scholar 

  12. Corvus Energy AT6500 high performance energy storage. Corvus Energy. http://files7.webydo.com/42/421998/UploadedFiles/15e14716-e3fd4bd4-af37-6a67a86f74a5.pdf. Accessed 07 May 2019

  13. Siemens Norge Snart blir trafikken over norske fjorder elektrisk. Siemens Norge. https://w3.siemens.no/home/no/no/topics/fremtidenelektrisk/pages/elektrisk-bilferge.aspx. Accessed 07 May 2019

  14. Affenzeller J, Beaumel L, Bergstein M, Coppin O, Faye I, Hildermeier J, Isikveren A, Perlo P, Pfluger J, Scott D, Thulin N (2017) Electrification of the transport system: studies and reports. European Commission

    Google Scholar 

  15. Ansean D, Gonzalez M, Garcia V, Viera J, Anton J, Blanco C (2015) Evaluation of LiFePO4 batteries for electric vehicle applications. IEEE Trans Ind Appl 51:1855–1863

    Article  CAS  Google Scholar 

  16. Naumann M, Karl R, Truong C, Jossen A, Hesse H (2015) Lithium-ion battery cost analysis in PV-household application. Energy Procedia 73:37–47

    Article  Google Scholar 

  17. Naumann M, Schimpe M, Keil P, Jossen A, Hesse H (2018) Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell. J Energy Storage 17:153–169

    Article  Google Scholar 

  18. Saxena S, Le Floch C, MacDonald J, Moura S (2015) Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J Power Sources 282:265–276

    Article  CAS  Google Scholar 

  19. Martinez-Laserna E, Gandiaga I, Sarasketa-Zabala E, Stroe D-I, Swierczynski M, Goikoetxea A (2018) Battery second life: hype, hope or reality? A critical review on the state of art. Renew Sustain Energy Rev 93:701–718

    Article  Google Scholar 

  20. Casals L, García B, Canal C (2019) Second life batteries lifespan: rest of useful life and environmental analysis. J Environ Manag 232:354–363

    Article  Google Scholar 

  21. Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries †. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  22. Williard N, He W, Hendricks C, Pecht M (2013) Lessons learned from the 787 Dreamliner issue on Lithium-ion battery reliability. Energies 6:4682–4695

    Article  Google Scholar 

  23. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  24. Dubarry M, Qin N, Brooker P (2018) Calendar aging of commercial Li-ion cells of different chemistries - a review. Curr Opin Electrochem 9:106–113

    Article  CAS  Google Scholar 

  25. Richter F, Vie P, Kjelstrup S, Burheim O (2017) Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochim Acta 250:228–237

    Article  CAS  Google Scholar 

  26. Sarasketa-Zabala E, Gandiaga I, Rodriguez-Martinez LM, Villarreal I (2014) Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J Power Sources 272:45–57

    Article  CAS  Google Scholar 

  27. Sarasketa-Zabala E, Gandiaga I, Rodriguez-Martinez L, Villarreal I (2015) Cycling ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J Power Sources 275:573–587

    Article  CAS  Google Scholar 

  28. Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphiteLiFePO4 cells. J Power Sources 196:3942–3948

    Article  CAS  Google Scholar 

  29. Gao Y, Jiang J, Zhang C, Zhang W, Jiang Y (2018) Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode. J Power Sources 400:641–651

    Article  CAS  Google Scholar 

  30. Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries - a post-mortem study. J Power Sources 262:129–135

    Article  CAS  Google Scholar 

  31. Schmitt J, Maheshwari A, Heck M, Lux S, Vetter M (2017) Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging. J Power Sources 353:183–194

    Article  CAS  Google Scholar 

  32. Gao Y, Jiang J, Zhang C, Zhang W, Ma Z, Jiang Y (2017) Lithium-ion battery aging mechanisms and life model under different charging stresses. J Power Sources 356:103–114

    Article  CAS  Google Scholar 

  33. Leng F, Tan C, Ming C, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nitta N, Wu F, Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  35. Fergus J (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  36. Liu F, Mukherjee P (2015) Materials for positive electrodes in rechargeable lithium-ion batteries. In: Rechargeable lithium batteries. Elsevier, Cambridge, pp 21–39

    Chapter  Google Scholar 

  37. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x≤l): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  38. Thackeray M, Kock A, David W (1993) Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system. Mater Res Bull 28:1041–1049

    Article  CAS  Google Scholar 

  39. Whittingham M (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  PubMed  Google Scholar 

  40. Yoo G-W, Jang B-C, Son J-T (2015) Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery. Ceram Int 41:1913–1916

    Article  CAS  Google Scholar 

  41. Gallagher K, Dees D, Nelson P (2015) PHEV battery cost assessment. Vehicle technologies program annual merit review and peer evaluation meeting, argonne national laboratory, May 9–13th

    Google Scholar 

  42. Burheim OS (2017) Engineering energy storage. Elsevier, Amsterdam

    Google Scholar 

  43. Noh H-J, Youn S, Yoon C, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li(NixCoyMnz)O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  44. Schipper F, Erickson E, Erk C, Shin J-Y, Chesneau F, Aurbach D (2017) Review - recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164(1):6220–6228

    Article  CAS  Google Scholar 

  45. Goriparti S, Miele E, de Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  46. Azuma H, Imoto H, Yamada S, Sekai K (1999) Advanced carbon anode materials for lithium ion cells. J Power Sources 81:1–7

    Article  Google Scholar 

  47. Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50:391–395

    Article  CAS  Google Scholar 

  48. Qi Y, Guo H, Hector L, Timmons A (2010) Threefold increase in the Young’s Modulus of graphite negative electrode during Lithium intercalation. J Electrochem Soc 157(5):558–566

    Article  CAS  Google Scholar 

  49. Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sources 396:265–275

    Article  CAS  Google Scholar 

  50. Fang J, Kelarakis A, Lin Y-W, Kang C-Y, Yang M-H, Cheng C-L, Wang Y, Giannelis E, Tsai L-D (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13:14457–14461

    Article  CAS  PubMed  Google Scholar 

  51. Man C, Jiang P, Wong K-W, Zhao Y, Tang C, Fan M, Lau W-M, Mei J, Li S, Liu H, Dui D (2014) Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyper thermal hydrogen induced crosslinking of poly(ethylene oxide). J Mater Chem 2:11980–11986

    Article  CAS  Google Scholar 

  52. Jeong H-S, Kim D-W, Jeong Y, Lee S-Y (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoridehexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sources 195(18):6116–6121

    Article  CAS  Google Scholar 

  53. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2 -(2hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    Article  CAS  Google Scholar 

  54. Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 235:248–254

    Article  CAS  Google Scholar 

  55. Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1:18–42

    Article  Google Scholar 

  56. Zhang S (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  57. Grolleau S, Delaille A, Gualous H, Gyan P, Revel R, Bernard J, Redondo-Inglesias E, Peter J (2014) Calendar aging of commercial graphite/LiFePO4 cell – predicting capacity fade under time dependent storage conditions. J Power Sources 255:450–458

    Article  CAS  Google Scholar 

  58. Barré A, Deguilhem B, Grolleau S, Gérad M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689

    Article  CAS  Google Scholar 

  59. Aurback D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M (2007) Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J Power Sources 165(2):491–499

    Article  CAS  Google Scholar 

  60. Zhang J, Terrones M, Park C, Mukherjee R, Monthioux M, Koratkar N, Kim Y, Hurt R, Frackowiak E, Enoki T, Chen Y, Chen Y, Bianco A (2016) Carbon science in 2016: status, challenges and perspectives. Carbon 98(70):708–732

    Article  CAS  Google Scholar 

  61. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059

    Article  CAS  PubMed  Google Scholar 

  62. Placke T, Kloepsch R, Duehnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21:1939–1964

    Article  CAS  Google Scholar 

  63. Zheng F, Kotobuki M, Song S, On Lai M, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    Article  CAS  Google Scholar 

  64. Liu X, Zhong L, Huang S, Mao S, Zhu T, Huang J (2012) Size-dependent fracture of silicon nanoparticles during lithiation. Acs Nano 6(2):1522–1531

    Article  CAS  PubMed  Google Scholar 

  65. Chan C, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y (2011) High-performance lithium battery anodes using silicon nanowires. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group. World Scientific, Singapore, pp 187–191

    Google Scholar 

  66. Yao Y, Huo K, Hu L, Liu N, Cha J, McDowell M, Chu P, Cui Y (2011) Highly conductive, mechanically robust, and electrochemically inactive tic/c nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 5(10):8346–8351

    Article  CAS  PubMed  Google Scholar 

  67. Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley P, Mao O, Chen J (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70

    Article  CAS  Google Scholar 

  68. Szcsech J, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4(1):56–72

    Article  Google Scholar 

  69. Burrell A, Cunningham B (2018) Silicon electrolyte interface stabilization (seista): second quarter progress report 2018. SEISta project

    Google Scholar 

  70. Wang C, Wu H, Chen Z, McDowell M, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Li X, Mei D, Feng J, Hu M, Hu J, Engelhard M, Zheng J, Xu W, Xiao J (2014) Reduction mechanism of fluoroethylene carbonate for stable solid electrolyte interphase film on silicon anode. ChemSusChem 7(2):549–554

    Article  CAS  PubMed  Google Scholar 

  72. Zong L, Jin Y, Liu C, Zhu B, Hu X, Lu Z, Zhu J (2016) Precise perforation and scalable production of si particles from low-grade sources for high-performance lithium ion battery anodes. Nano Lett 16(11):7210–7215

    Article  CAS  PubMed  Google Scholar 

  73. Dash R, Pannala S (2016) The potential of silicon anode based lithium ion batteries. Mater Today 9(19):483–484

    Article  CAS  Google Scholar 

  74. Chae S, Ko M, Park S, Kim N, Ma J, Cho J (2016) Micron-sized fe-cu-si ternary composite anodes for high energy li-ion batteries. Energy Environ Sci 9(4):1251–1257

    Article  CAS  Google Scholar 

  75. Li J, Dahn J (2007) An in situ x-ray diffraction study of the reaction of li with crystalline si. J Electrochem Soc 154(3):A156–A161

    Article  CAS  Google Scholar 

  76. Yoon T, Nguyen C, Seo D, Lucht B (2015) Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries. J Electrochem Soc 162(12):A2325–A2330

    Article  CAS  Google Scholar 

  77. Philippe B, Dedryvére R, Gorgoi M, Rensmo H, Gonbeau D, Edstroöm K (2013) Role of the lipf6 salt for the long-term stability of silicon electrodes in li-ion batteries - a photoelectron spectroscopy study. Chem Mater 25(3):394–404

    Article  CAS  Google Scholar 

  78. Jin Y, Zhu B, Lu Z, Liu N, Zhu J (2017) Challenges and recent progress in the development of si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715

    Article  CAS  Google Scholar 

  79. Kim H, Choi S, Lee S, Seo M, Lee J, Deniz E, Lee Y, Kim E, Choi J (2015) Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett 16(1):282–288

    Article  PubMed  CAS  Google Scholar 

  80. Forney M, Ganter M, Staub J, Ridgley R, Landi B (2013) Delithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (slmp). Nano Lett 13(9):4158–4163

    Article  CAS  PubMed  Google Scholar 

  81. Zhao J, Zhenda L, Liu N, Lee H-W, McDowell M, Cui Y (2014) Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat Commun 5:5088

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Colclasure A, Finegan D, Ren D, Shi Y, Feng X, Cao L, Yang Y, Smith K (2019) Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode. Electrochim Acta 297:1109–1120

    Article  CAS  Google Scholar 

  83. Manthiram A, Song B, Li W (2017) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater 6:125–139

    Article  Google Scholar 

  84. Song H, Heui S, Ahn J, Oh S, Yim T (2019) Artificial cathode-electrolyte interphases on nickel-rich cathode materials modified by silyl functional group. J Power Sources 416:1–8

    Article  CAS  Google Scholar 

  85. Yu X, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452

    Article  CAS  Google Scholar 

  86. Zhao W, Zheng G, Lin M, Zhao W, Li D, Guan X, Ji Y, Ortiz G, Yang Y (2018) Toward a stable solid-electrolyte-interfaces on nickelrich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. J Power Sources 380:149–157

    Article  CAS  Google Scholar 

  87. Bak S-M, Hu E, Zhou Y, Yu X, Senanayake S, Cho S-J, Kim K-B, Chung K, Yang X-Q, Nam K-W (2014) Structural changes and thermal stability of charged LixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces 6(24):22594–22601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ENERSENSE programme and NTNU Team Hydrogen at the Norwegian University of Science and Technology (NTNU) for supporting and helping on this book project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spitthoff, L., Lamb, J.J., Pollet, B.G., Burheim, O.S. (2020). Lifetime Expectancy of Lithium-Ion Batteries. In: Lamb, J., Pollet, B. (eds) Micro-Optics and Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-43676-6_11

Download citation

Publish with us

Policies and ethics