Skip to main content

Compatible Discrete Operator Schemes for the Steady Incompressible Stokes and Navier–Stokes Equations

  • Conference paper
  • First Online:
Book cover Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

Abstract

We extend the Compatible Discrete Operator (CDO) schemes to the steady incompressible Stokes and Navier–Stokes equations. The main features of the CDO face-based schemes are recalled: a hybrid velocity discretization with degrees of freedom at faces and cells, a stabilized velocity gradient reconstruction defined on the face-based subcell pyramids, and a discrete pressure attached to the mesh cells. We introduce a discrete divergence operator that will account for the velocity-pressure coupling, and a hybrid discretization of the convection term. The results of several benchmark test cases validate the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archambeau, F., Méchitoua, N., Sakiz, M.: Code\_Saturne: a finite volume code for turbulent flows—industrial applications. Int. J. Finite 1(1) (2004)

    Google Scholar 

  2. Bonelle, J.: Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations. Ph.D. thesis, Université Paris-Est (2014)

    Google Scholar 

  3. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM Math. Model. Numer. Anal. 48(2), 553–581 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes. IMA J. Numer. Anal. 35(4), 1672–1697 (2015)

    Article  MathSciNet  Google Scholar 

  5. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27(4), 421–433 (1998)

    Article  Google Scholar 

  6. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24(1), 113–151 (1966)

    Article  Google Scholar 

  7. Cancès, C., Omnes, P. (eds.): Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, vol. 199. Springer International Publishing, Lille, France (2017)

    Google Scholar 

  8. Cantin, P., Ern, A.: Vertex-based compatible discrete operator schemes on polyhedral meshes for advection-diffusion equations. Comput. Methods Appl. Math. 16(2), 187–212 (2016)

    Article  MathSciNet  Google Scholar 

  9. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015)

    Article  MathSciNet  Google Scholar 

  10. Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  11. Droniou, J., Eymard, R., Feron, P.: Gradient schemes for Stokes problem. IMA J. Numer. Anal. 36(4), 1636–1669 (2015)

    Article  MathSciNet  Google Scholar 

  12. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Methods Appl. Sci. 20(2), 265–295 (2010)

    Article  MathSciNet  Google Scholar 

  13. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Milani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonelle, J., Ern, A., Milani, R. (2020). Compatible Discrete Operator Schemes for the Steady Incompressible Stokes and Navier–Stokes Equations. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_6

Download citation

Publish with us

Policies and ethics