Skip to main content

A New Class of \(L^2\)-Stable Schemes for the Isentropic Euler Equations on Staggered Grids

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

Abstract

Staggered schemes for compressible flows are highly non linear and the stability analysis has historically been performed with a heuristic approach and the tuning of numerical parameters [12]. We investigate the \(L^2\)-stability of staggered schemes by analysing their numerical diffusion operator. The analysis of the numerical diffusion operator gives new insight into the scheme and is a step towards a proof of linear stability or stability for almost constant initial data. For most classical staggered schemes [9,10,11, 14], we are able to prove the positivity of the numerical diffusion only in specific cases (constant sign velocities). We then propose a class of linearly \(L^2\)-stable staggered schemes for the isentropic Euler equations based on a carefully chosen numerical diffusion operator. We give an example of such a scheme and present some first numerical results on a Riemann problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthelin, F., Goudon, T., Minjeaud, S.: Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis. Math. Comput. 84(295), 2221–2262 (2015)

    Article  MathSciNet  Google Scholar 

  2. Dellacherie, S.: Analysis of godunov type schemes applied to the compressible euler system at low mach number. J. Comp. Phys. 229(4), 978–1016 (2010)

    Article  MathSciNet  Google Scholar 

  3. Dellacherie, S., Omnes, P., Rieper, F.: Analysis of godunov type schemes applied to the compressible euler system at low mach number. J. Comp. Phys. 229(14), 5315–5338 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ghidaglia, J., Kumbaro, A., Coq, G.L.: Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. Comptes Rendus de l’Acad. Sciences Paris, Série 1, vol. 322, pp. 981–988 (1996)

    Google Scholar 

  5. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Google Scholar 

  6. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Mat. Sbornik. 47, 271–306 (1959)

    Google Scholar 

  7. Harlow, F., Amsden, A.: Numerical calculation of almost incompressible flow. Journal of Computational Physics 3, 80–93 (1968)

    Google Scholar 

  8. Harlow, F., Amsden, A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8, 197–213 (1971)

    Google Scholar 

  9. Herbin, R., Kheriji, W., Latché, J.C.: Staggered schemes for all speed flows. In: ESAIM: Proceedings, EDP Sciences, Congrès National de Mathématiques Appliquées et Industrielles, vol. 35, pp. 122–150 (2011)

    Google Scholar 

  10. Herbin, R., Kheriji, W., Latché, J.C.: On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM: Math. Model. Numer. Anal. EDP Sciences, 48(6), 1807–1857 (2014)

    Google Scholar 

  11. Herbin, R., Latché, J.C.: A kinetic energy preserving convection operator for the mac discretization of compressible Navier–Stokes equations. In: Mathematical Modelling and Numerical Analysis (2010). https://hal.archives-ouvertes.fr/hal-00477079/document

  12. Hirt, C.W.: Heuristic stability theory for finite difference equations. J. Comp. Phys. 2, 339–355 (1968)

    Article  Google Scholar 

  13. Masella, J.M., Faille, I., Gallouët, T.: On an approximate godunov scheme. Int. J. Comput. Fluid Dyn. 12, 133–149 (1999)

    Article  MathSciNet  Google Scholar 

  14. Prosperetti, A., Tryggvason, G.: Computational methods for multiphase flow. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  15. Roe, P.L.: Approximate riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Ait-Ameur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ndjinga, M., Ait-Ameur, K. (2020). A New Class of \(L^2\)-Stable Schemes for the Isentropic Euler Equations on Staggered Grids. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_39

Download citation

Publish with us

Policies and ethics