Skip to main content

On the \(L^2\) Stability of Finite Volumes for Stationary First Order Systems

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

  • 1071 Accesses

Abstract

The aim of this paper is two-folds. Firstly we study first order stationary systems of PDEs of the form \(\sum _k A_k\partial _k U + KU=0\) with \(K\ngtr 0\) on \(\mathbb {R}^d\). We prove that the classical assumption \(K>0\) is not necessary for the well-posedness of the system and is violated in the particular case of the first order Poisson problem. Secondly we prove the \(L^2\) stability of the finite volume discretisations provided the term KU is appropriately discretised on faces. Our result relies on a discrete Gagliardo-Nirenberg-Sobolev inequality to be submitted [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audusse, E., Minh, H.D., Omnes, P., Penel, Y.: Analysis of a modified godunov scheme for the linear wave equation with coriolis source term on cartesian meshes. J. Comput. Phys. 373, 91–129 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bermudez, A., Vazquez, E.: Upwind methods for hyperbolic conservation laws with source terms. Comp. Fluids 23(8), 1049–1071 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. In: Frontiers in Mathematics Series. Birkhäuser (2004)

    Google Scholar 

  5. Bouchut, F., Eymard, R., Prignet, A.: Finite volume schemes for the approximation via characteristics of linear convection equations with irregular data. J. Evol. Equ. 11, 687–724 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bouchut, F., Ounaissa, H., Perthame, B.: Upwinding of the source term at interfaces for euler equations with high friction. Comput. Math. Appl. 53(3–4), 361–375 (2007)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and PDEs, Universitext. Springer, New York (2010)

    Google Scholar 

  8. Coudière, Y., Gallouët, T., Herbin, R.: Discrete sobolev inequalities and Lp error estimates for approximate finite volume solutions of convection diffusion equations. M2AN Math. Model. Numer. Anal 35, 767–778 (2001)

    Google Scholar 

  9. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  10. Eymard, R., Gallouët, T., Herbin, R.: Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30, 1009–1043 (2010)

    Google Scholar 

  11. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)

    Article  MathSciNet  Google Scholar 

  12. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Book  Google Scholar 

  13. Gosse, L.: Computing qualitatively correct approximations of balance laws. SIMAI Springer Series, vol. 2. Springer, Mailand (2013)

    Google Scholar 

  14. Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996)

    Google Scholar 

  15. Ndjinga, M.: A discrete gagliardo-nirenberg-sobolev inequality. To be submitted

    Google Scholar 

  16. Ndjinga, M.: \( {L}^2\) stability of nonlinear finite volume schemes for linear hyperbolic systems. C. R. Acad. Sci. Paris 351, 707–711 (2013)

    Article  MathSciNet  Google Scholar 

  17. Serre, D.: Systems of Conservation Laws I: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  18. Vila, J.P., Villedieu, P.: Convergence de la méthode des volumes finis pour les systèmes de friedrichs. C. R. Acad. Sci. Paris 325 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Ndjinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ndjinga, M., Ngwamou, S.K. (2020). On the \(L^2\) Stability of Finite Volumes for Stationary First Order Systems. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_38

Download citation

Publish with us

Policies and ethics