Skip to main content

\(\mathscr {K}\)-Convergence of Finite Volume Solutions of the Euler Equations

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

  • 1094 Accesses

Abstract

We review our recent results on the convergence of invariant domain-preserving finite volume solutions to the Euler equations of gas dynamics. If the classical solution exists we obtain strong convergence of numerical solutions to the classical one applying the weak-strong uniqueness principle. On the other hand, if the classical solution does not exist we adapt the well-known Prokhorov compactness theorem to space-time probability measures that are generated by the sequences of finite volume solutions and show how to obtain the strong convergence in space and time of observable quantities. This can be achieved even in the case of ill-posed Euler equations having possibly many oscillatory solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the mean value \(\left\langle \mathscr {V}_{t,x}; b\left( \tilde{\varvec{U}}\right) \right\rangle \equiv \int _{\mathbb {R}^{d+2}} b\left( \tilde{\varvec{U}} \right) d \mathscr {V}_{t,x}( \tilde{\varvec{U}} )\) for \(\varvec{U} \in \mathbb {R}^{d+2}\) and b bounded continuous function.

  2. 2.

    We recall that the Wasserstein metric of q-th order, \(q \in [1, \infty )\), is defined in the following way \(W_q({\mathscr {N}}, {\mathscr {V}}):= \left\{ \inf _{\pi \in \Pi (\mathscr {N}, \mathscr {V})} \int _{\mathbb {R}^{d+2} \times \mathbb {R}^{d+2}} | \zeta -\xi |^q d\pi (\zeta ,\xi ) \right\} ^{1/q}\), where \(\Pi (\mathscr {N}, \mathscr {V})\) is the set of probability measures on \(\mathbb {R}^{d+2} \times \mathbb {R}^{d+2}\) with marginals \(\mathscr {N}\) and \(\mathscr {V}\).

References

  1. Balder, E.: On Prohorov’s theorem for transition probabilities. Sém. Anal. Convexe 19 (1989)

    Google Scholar 

  2. Breit, D., Feireisl, F., Hofmanová, M.: Solution semiflow to the isentropic Euler system. Arch. Ration. Mech. Anal. (2019). https://doi.org/10.1007/s00205-019-01420-6

  3. Brenner, H.: Kinematics of volume transport. Phys. A 349, 11–59 (2005)

    Article  Google Scholar 

  4. Brenner, H.: Fluid mechanics revisited. Phys. A 349, 190–224 (2006)

    Article  Google Scholar 

  5. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Japan 70(4), 1227–1245 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(2), 167–179 (1979)

    Article  MathSciNet  Google Scholar 

  8. De Lellis, C., Székelyhidi, Jr., L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Google Scholar 

  9. DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82(1), 27–70 (1983)

    Article  MathSciNet  Google Scholar 

  10. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88(3), 223–270 (1985)

    Article  MathSciNet  Google Scholar 

  11. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Springer Series in Computational Mathematics, vol. 48. Springer, Cham (2015)

    Google Scholar 

  12. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., et al. (eds.) Handbook of Numerical Analysis, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  13. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 1–44 (2019). https://doi.org/10.1007/s10208-019-09433-z

  14. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: \(\cal{K}-\)convergence as a new tool in numerical analysis. IMA J. Numer. Anal. (2019). https://doi.org/10.1093/imanum/drz045

  15. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144, 89–132 (2020)

    Google Scholar 

  16. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Fluid Flows (in preparation)

    Google Scholar 

  17. Feireisl, E., Lukáčová-Medvid’ová, M., She, B., Wang, Y.: Computing oscillatory solutions of the Euler system via \(K\)-convergence (2019). arXiv:1910.03161

  18. Feistauer, M.: Mathematical methods in fluid dynamics. In: Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 67. Longman Scientific & Technical, Harlow (1993)

    Google Scholar 

  19. Fjordholm, U.S., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17(3), 763–827 (2017)

    Article  MathSciNet  Google Scholar 

  20. Fjordholm, U.S., Lye, K., Mishra, S., Weber, F.: Statistical solutions of hyperbolic systems of conservation laws: numerical approximation (2020). arXiv:1906.02536v1

  21. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

    Article  MathSciNet  Google Scholar 

  22. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Google Scholar 

  23. Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  Google Scholar 

  24. Guermond, J.L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54(4), 2466–2489 (2016)

    Article  MathSciNet  Google Scholar 

  25. Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28(11), 3873–3890 (2015)

    Article  MathSciNet  Google Scholar 

  26. Jovanović, V., Rohde, C.: Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal. 43(6), 2423–2449 (2006)

    Article  MathSciNet  Google Scholar 

  27. Komlós, J.: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18, 217–229 (1967)

    Article  MathSciNet  Google Scholar 

  28. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Ltd. (1997)

    Google Scholar 

  29. Kröner, D., Zajaczkowski, W.M.: Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids. Math. Methods Appl. Sci. 19(3), 235–252 (1996)

    Article  MathSciNet  Google Scholar 

  30. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press (2002)

    Google Scholar 

  31. Schochet, S.: Examples of measure-valued solutions. Comm. Partial Diff. Eq. 14(5), 545–575 (1989)

    Article  MathSciNet  Google Scholar 

  32. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  33. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The author wishes to thank E. Feireisl (Prague), H. Mizerová (Bratislava) and B. She (Prague) for fruitful discussions on the topic. This research was supported by the German Science Foundation under the grants TRR 146 Multiscale simulation methods for soft matter systems and TRR 165 Waves to Weather.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Lukáčová-Medvid’ová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukáčová-Medvid’ová, M. (2020). \(\mathscr {K}\)-Convergence of Finite Volume Solutions of the Euler Equations. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_2

Download citation

Publish with us

Policies and ethics