Skip to main content

Non-isothermal Scharfetter–Gummel Scheme for Electro-Thermal Transport Simulation in Degenerate Semiconductors

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Abstract

Electro-thermal transport phenomena in semiconductors are described by the non-isothermal drift-diffusion system. The equations take a remarkably simple form when assuming the Kelvin formula for the thermopower. We present a novel, non-isothermal generalization of the Scharfetter–Gummel finite volume discretization for degenerate semiconductors obeying Fermi–Dirac statistics, which preserves numerous structural properties of the continuous model on the discrete level. The approach is demonstrated by 2D simulations of a heterojunction bipolar transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367–383 (2002). https://doi.org/10.1088/0951-7715/15/2/307

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121(4), 637–670 (2012). https://doi.org/10.1007/s00211-012-0448-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Eymard, R., Gallouët, T.: H-convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41(2), 539–562 (2003). https://doi.org/10.1137/s0036142901397083

    Article  MathSciNet  MATH  Google Scholar 

  4. Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Drift-Diffusion Models. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods, vol. 2, chap. 50, pp. 731–771. CRC Press, Taylor & Francis Group, Boca Raton (2017). https://doi.org/10.4324/9781315152318-25

  5. Kantner, M.: Non-isothermal generalization of the Scharfetter–Gummel scheme for degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J. Comput. Phys. 402, 109091 (2020). https://doi.org/10.1016/j.jcp.2019.109091 (to appear)

  6. Koprucki, T., Rotundo, N., Farrell, P., Doan, D.H., Fuhrmann, J.: On thermodynamic consistency of a Scharfetter-Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement. Opt. Quantum. Electron. 47(6), 1327–1332 (2015). https://doi.org/10.1007/s11082-014-0050-9

    Article  Google Scholar 

  7. Palankovski, V., Quay, R.: Analysis and Simulation of Heterostructure Devices. Springer, Vienna (2004). https://doi.org/10.1007/978-3-7091-0560-3

  8. Peterson, M.R., Shastry, B.S.: Kelvin formula for thermopower. Phys. Rev. B 82, 195105 (2010). https://doi.org/10.1103/physrevb.82.195105

    Article  Google Scholar 

  9. Wachutka, G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 9(11), 1141–1149 (1990). https://doi.org/10.1109/43.62751

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) under Germany’s Excellence Strategy—EXC2046: Math+ (Berlin Mathematics Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koprucki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kantner, M., Koprucki, T. (2020). Non-isothermal Scharfetter–Gummel Scheme for Electro-Thermal Transport Simulation in Degenerate Semiconductors. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_14

Download citation

Publish with us

Policies and ethics