Skip to main content

MRI in Cord Lesions

  • Chapter
  • First Online:
MRI of the Spine
  • 1117 Accesses

Abstract

The spinal cord can be affected by numerous pathologies, many of which can result in significant morbidity and mortality. Neuroimaging is an invaluable tool when investigating neurological deficits relating to the spine, and MRI is the workhorse imaging modality. Although an exhaustive description of the causes and imaging characteristics of spinal cord disease is beyond the scope of this text, we have discussed common and some uncommon, but important, pathologies including traumatic, neoplastic, infectious, demyelinating, inflammatory, ischemic, vascular, congenital, genetic, and metabolic etiologies as seen below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  1. Ahuja CS, Nori S, Tetreault L, et al. Traumatic spinal cord injury – repair and regeneration. Neurosurgery. 2017;80:S9–22.

    Article  PubMed  Google Scholar 

  2. Martínez-Pérez R, Paredes I, Cepeda S, et al. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion. Am J Neuroradiol. 2014;35:1029–34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5:407–13.

    Article  CAS  PubMed  Google Scholar 

  4. Chandra J, Sheerin F, Lopez De Heredia L, et al. MRI in acute and subacute post-traumatic spinal cord injury: pictorial review. Spinal Cord. 2012;50:2–7.

    Article  CAS  PubMed  Google Scholar 

  5. Leypold BG, Flanders AE, Burns AS. The early evolution of spinal cord lesions on MR imaging following traumatic spinal cord injury. Am J Neuroradiol. 2008;29:1012–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyanji F, Furlan JC, Aarabi B, et al. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome-prospective study with 100 consecutive patients 1. Radiology. 2007;243:820–7.

    Article  PubMed  Google Scholar 

  7. Kumar Y, Hayashi D. Role of magnetic resonance imaging in acute spinal trauma: a pictorial review. BMC Musculoskelet Disord. 2016;17(310):2–11.

    Google Scholar 

  8. Kulkarni MV, McArdle CB, Kopanicky D, et al. Acute spinal cord injury: MR imaging at 1.5 T. Radiology. 1987;164:837–43.

    Article  CAS  PubMed  Google Scholar 

  9. Talekar K, Poplawski M, Hegde R, et al. Imaging of spinal cord injury: acute cervical spinal cord injury, cervical Spondylotic myelopathy, and cord herniation. Semin Ultrasound CT MRI. 2016;37:431–47.

    Article  Google Scholar 

  10. Planner AC, Pretorius PM, Graham A, et al. Subacute progressive ascending myelopathy following spinal cord injury: MRI appearances and clinical presentation. Spinal Cord. 2008;46:140–4.

    Article  CAS  PubMed  Google Scholar 

  11. Potter K, Saifuddin A. MRI of chronic spinal cord injury. Br J Radiol. 2003;76:347–52.

    Article  CAS  PubMed  Google Scholar 

  12. Robert H, Quencer M, Sheldon JJ, et al. MRI of the chronically injured cervical spinal cord. Am J Roentgenol. 1986;147:125–32.

    Article  Google Scholar 

  13. Koeller K, Rosenblum R, Morrison A. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20:1721–49.

    Article  CAS  PubMed  Google Scholar 

  14. Smith AB, Soderlund KA, Rushing EJ, et al. Radiologic-pathologic correlation of pediatric and adolescent spinal neoplasms: part 1, intramedullary spinal neoplasms. Am J Roentgenol. 2012;198:34–43.

    Article  Google Scholar 

  15. Mechtler LL, Nandigam K. Spinal cord tumors. New views and future directions. Neurol Clin. 2013;31:241–68.

    Article  PubMed  Google Scholar 

  16. Celano E, Salehani A, Malcolm JG, et al. Spinal cord ependymoma: a review of the literature and case series of ten patients. J Neuro-Oncol. 2016;128:377–86.

    Article  Google Scholar 

  17. Shors SM, Jones TA, Jhaveri MD, et al. Myxopapillary ependymoma of the sacrum. Radiographics. 2006;26:S111–6.

    Article  PubMed  Google Scholar 

  18. Wippold FJ, Smirniotopoulos JG, Moran CJ, et al. MR imaging of myxopapillary ependymoma: findings and value to determine extent of tumor and its relation to Intraspinal structures. Am J Roentgenol. 1995;165:1263–7.

    Article  Google Scholar 

  19. Cure LM, Hancock CR, Barrocas AM, et al. Interesting case of subependymoma of the spinal cord. Spine J. 2014;14:e9–12.

    Article  PubMed  Google Scholar 

  20. Jallo GI, Zagzag D, Epstein F. Intramedullary subependymoma of the spinal cord. Neurosurgery. 1996;38:251–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hoeffel C, Boukobza M, Polivka M, et al. MR manifestations of subependymomas. AJNR Am J Neuroradiol. 1995;16:2121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo H, Kim J-H, Lee D, et al. Nonenhancing intramedullary astrocytomas and other MR imaging features: a retrospective study and systematic review. Am J Neuroradiol. 2009;31:498–503.

    Article  PubMed  Google Scholar 

  23. Tobin MK, Geraghty JR, Engelhard HH, et al. Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus. 2015;39:E14.

    Article  PubMed  Google Scholar 

  24. Patel U, Pinto RS, Miller DC, et al. MR of spinal cord ganglioglioma. Am J Neuroradiol. 1998;19:879–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oppenheimer DC, Johnson MD, Judkins AR. Ganglioglioma of the spinal cord. J Clin Imaging Sci. 2015;5:53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chu B-C, Terae S, Hida K, et al. MR findings in spinal hemangioblastoma: correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol. 2001;22:206–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dillard-Cannon E, Atsina K-B, Ghobrial G, et al. Lumbar paraganglioma. J Clin Neurosci. 2016;30:149–51.

    Article  PubMed  Google Scholar 

  28. Yi X, Zhang Y, Zhou C, et al. Lumbosacral intraspinal paraganglioma: clinicopathologic and computed tomography/magnetic resonance imaging features of 13 cases. World Neurosurg. 2018;113:e586–97.

    Article  PubMed  Google Scholar 

  29. Chou S-C, Chen T-F, Kuo M-F, et al. Posterior vertebral scalloping of the lumbar spine due to a large cauda equina paraganglioma. Spine J. 2016;16:e327–8.

    Article  PubMed  Google Scholar 

  30. Yang W, Garzon-Muvdi T, Braileanu M, et al. Primary intramedullary spinal cord lymphoma: a population-based study. Neuro-Oncology. 2017;19:414–21.

    PubMed  Google Scholar 

  31. Flanagan EP, O’Neill BP, Porter AB, et al. Primary intramedullary spinal cord lymphoma. Neurology. 2011;77:784–91.

    Article  CAS  PubMed  Google Scholar 

  32. Rykken J, Diehn F, Hunt C, et al. Intramedullary spinal cord metastases: MRI and relevant clinical features from a 13-year institutional case series. Am J Neuroradiol. 2013;34:2043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellis JA, Rothrock RJ, Moise G, et al. Primitive neuroectodermal tumors of the spine: a comprehensive review with illustrative clinical cases. Neurosurg Focus. 2010;30:E1.

    Article  Google Scholar 

  34. Talbott JF, Narvid J, Chazen JL, et al. An imaging-based approach to spinal cord infection. Semin Ultrasound CT MRI. 2016;37:411–30.

    Article  Google Scholar 

  35. DeSanto J, Ross JS. Spine infection/inflammation. Radiol Clin N Am. 2011;49:105–27.

    Article  PubMed  Google Scholar 

  36. Danner RL, Hartman BJ. Update on spinal epidural abscess: 35 cases and review of the literature. Rev Infect Dis. 1987;9:265–74.

    Article  CAS  PubMed  Google Scholar 

  37. Wang VY, Chou D, Chin C. Spine and spinal cord emergencies: vascular and infectious causes. Neuroimaging Clin N Am. 2010;20:639–50.

    Article  PubMed  Google Scholar 

  38. Chen W-C, Wang J-L, Wang J-T, et al. Spinal epidural abscess due to Staphylococcus aureus: clinical manifestations and outcomes. J Microbiol Immunol Infect. 2008;41:215–21.

    PubMed  Google Scholar 

  39. Curry WT, Hoh BL, Amin-Hanjani S, et al. Spinal epidural abscess: clinical presentation, management, and outcome. Surg Neurol. 2005;63:364–71.

    Article  PubMed  Google Scholar 

  40. Eastwood JD, Vollmer RT, Provenzale JM. Diffusion-weighted imaging in a patient with vertebral and epidural abscesses. AJNR Am J Neuroradiol. 2002;23:496–8.

    PubMed  PubMed Central  Google Scholar 

  41. Erdem H, Elaldi N, Batirel A, et al. Comparison of brucellar and tuberculous spondylodiscitis patients: results of the multicenter “Backbone-1 Study.”. Spine J. 2015;15:2509–17.

    Article  PubMed  Google Scholar 

  42. Hristea A, Constantinescu RVM, Exergian F, et al. Paraplegia due to non-osseous spinal tuberculosis: report of three cases and review of the literature. Int J Infect Dis. 2008;12:425–9.

    Article  PubMed  Google Scholar 

  43. Bernaerts OA, Vanhoenacker FM, Parizel PM, et al. Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol. 2003;13:1876–90.

    Article  CAS  PubMed  Google Scholar 

  44. Richie MB, Pruitt AA. Spinal cord infections. Neurol Clin. 2013;31:19–53.

    Article  PubMed  Google Scholar 

  45. Faria do Amaral LL, Nunes RH, da Rocha AJ. Parasitic and rare spinal infections. Neuroimaging Clin N Am. 2015;25:259–79.

    Article  Google Scholar 

  46. McGahan JP, Graves DS, Palmer PE. Coccidioidal spondylitis: usual and unusual radiographic manifestations. Radiology. 1980;136:5–9.

    Article  CAS  PubMed  Google Scholar 

  47. Erly WK, Bellon RJ, Seeger JF, et al. MR Imaging of Acute Coccidioidal Meningitis. Am J Neuroradiol. 1999;13:1241–5.

    Google Scholar 

  48. Lammering JC, Iv M, Gupta N, et al. Imaging spectrum of CNS coccidioidomycosis: prevalence and significance of concurrent brain and spinal disease. Am J Roentgenol. 2013;200:1334–46.

    Article  Google Scholar 

  49. Tan LA, Kasliwal MK, Nag S, et al. Rapidly progressive quadriparesis heralding disseminated coccidioidomycosis in an immunocompetent patient. J Clin Neurosci. 2014;21:1049–51.

    Article  PubMed  Google Scholar 

  50. Wrobel CJ, Meyer S, Johnson RH, et al. MR findings in acute and chronic coccidioidomycosis meningitis. AJNR Am J Neuroradiol. 1992;13:1241–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yokota H, Yamada K. Viral infection of the spinal cord and roots. Neuroimaging Clin N Am. 2015;25:247–58.

    Article  PubMed  Google Scholar 

  52. Pinto A, Santos E, Correa DF, et al. CMV and HSV-2 myeloradiculitis in an HIV infected patient. Rev Inst Med Trop Sao Paulo. 2011;53:173–5.

    Article  PubMed  Google Scholar 

  53. Whiteman ML, Dandapani BK, Shebert RT, et al. MRI of AIDS-related polyradiculomyelitis. J Comput Assist Tomogr. 1994;18:7–11.

    Article  CAS  PubMed  Google Scholar 

  54. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388:717–27.

    Article  PubMed  Google Scholar 

  55. Duffy MR, Chen T-H, Hancock WT, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.

    Article  CAS  PubMed  Google Scholar 

  56. Cao-Lormeau V-M, Blake A, Mons S, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Oehler E, Watrin L, Larre P, et al. Zika virus infection complicated by Guillain-Barre syndrome – case report, French Polynesia, December 2013. Euro Surveill. 2014;19.

    Google Scholar 

  58. Stübgen J-P. Immune-mediated myelitis associated with hepatitis virus infections. J Neuroimmunol. 2011;239:21–7.

    Article  PubMed  CAS  Google Scholar 

  59. Suzuki K, Takao M, Katayama Y, et al. Acute myelitis associated with HCV infection. BMJ Case Rep. 2013:bcr2013008934. https://doi.org/10.1136/bcr-2013-008934.

    Google Scholar 

  60. Bigi S, Aebi C, Nauer C, et al. Acute transverse myelitis in Lyme neuroborreliosis. Infection. 2010;38:413–6.

    Article  CAS  PubMed  Google Scholar 

  61. Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging. 2014;40:1267–79.

    Article  PubMed  Google Scholar 

  62. Alper G, Petropoulou KA, Fitz CR, et al. Idiopathic acute transverse myelitis in children: an analysis and discussion of MRI findings. Res Pap Mult Scler J. 2011;17:74–80.

    Article  Google Scholar 

  63. Harzheim M, Schlegel U, Urbach H, et al. Discriminatory features of acute transverse myelitis: a retrospective analysis of 45 patients. J Neurol Sci. 2004;217:217–23.

    Article  PubMed  Google Scholar 

  64. de Seze J, Stojkovic T, Breteau G, et al. Acute myelopathies: clinical, laboratory and outcome profiles in 79 cases. Brain. 2001;124:1509–21.

    Article  PubMed  Google Scholar 

  65. Beh SC, Greenberg BM, Frohman T, et al. Transverse Myelitis. Neurol Clin. 2013;31:79–138.

    Article  PubMed  Google Scholar 

  66. Gilden DH, Beinlich BR, Rubinstien EM, et al. Varicella-zoster virus myelitis: an expanding spectrum. Neurology. 1994;44:1818.

    Article  CAS  PubMed  Google Scholar 

  67. Gilden D, Nagel MA, Cohrs RJ. Varicella-zoster. Handb Clin Neurol. 2014;123:265–83.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Friedman DP, Tartaglino LM, Fisher AR, et al. MR imaging in the diagnosis of intramedullary spinal cord diseases that involve specific neural pathways or vascular territories. AJR. 1995;165:515–23.

    Article  CAS  PubMed  Google Scholar 

  69. Berth S, Carbunar O, Yang NS, et al. Varicella-zoster virus encephalomyelitis with a prominent demyelinating component. Neuropathology. 2015;35:587–91.

    Article  PubMed  Google Scholar 

  70. Jubelt B, Lipton HL. Enterovirus/picornavirus infections. In: Handbook of clinical neurology; 2014. p. 379–416.

    Google Scholar 

  71. Lee H, Chi C. Enterovirus 71 infection-associated acute flaccid paralysis: a case series of long-term neurologic follow-up. J Child Neurol. 2014;29:1283–90.

    Article  PubMed  Google Scholar 

  72. Messacar K, Schreiner TL, Maloney JA, et al. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet. 2015;385:1662–71.

    Article  PubMed  Google Scholar 

  73. Nelson GR, Bonkowsky JL, Doll E, et al. Recognition and management of acute flaccid myelitis in children. Pediatr Neurol. 2016;55:17–21.

    Article  PubMed  Google Scholar 

  74. Kraushaar G, Patel R, Stoneham GW. West Nile virus: a case report with flaccid paralysis and cervical spinal cord: MR imaging findings. AJNR Am J Neuroradiol. 2005;26:26–9.

    PubMed  PubMed Central  Google Scholar 

  75. Ali M, Safriel Y, Sohi J, et al. West Nile Virus Infection: MR Imaging Findings in the Nervous System. Am J Neuroradiol. 2005;20:1281–3.

    Google Scholar 

  76. Friess HM, Wasenko JJ. MR of staphylococcal myelitis of the cervical spinal cord. AJNR Am J Neuroradiol. 1997;18:455–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hood B, Wolfe SQ, Trivedi RA, et al. Intramedullary abscess of the cervical spinal cord in an otherwise healthy man. World Neurosurg. 2011;76:361.e15–9.

    Article  Google Scholar 

  78. Ferrari TCA, Moreira PRR. Neuroschistosomiasis: clinical symptoms and pathogenesis. Lancet Neurol. 2011;10:853–64.

    Article  PubMed  Google Scholar 

  79. Longo DL, Reich DS, Lucchinetti CF, et al. Multiple sclerosis. N Engl J Med. 2018;378:169–80.

    Article  Google Scholar 

  80. Honig LS, Sherematat WA. Magnetic resonance imaging of spinal cord lesions in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989;52:459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tartaglino LM, Friedman DP, Flanders AE, et al. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology. 1995;195:725–32.

    Article  CAS  PubMed  Google Scholar 

  82. Bot JCJ, Barkhof F, Polman CH, et al. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology. 2004;62:226–33.

    Article  CAS  PubMed  Google Scholar 

  83. Klawiter EC, Benzinger T, Roy A, et al. Spinal cord ring enhancement in multiple sclerosis. Arch Neurol. 2010;67:1395–8.

    PubMed  PubMed Central  Google Scholar 

  84. Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59:1224–31.

    Article  PubMed  Google Scholar 

  85. Pohl D, Alper G, Van Haren K, et al. Acute disseminated encephalomyelitis updates on an inflammatory CNS syndrome. Neurology. 2016;87:S39–45.

    Article  Google Scholar 

  86. Ketelslegers I, Visser I, Neuteboom R, et al. Disease course and outcome of acute disseminated encephalomyelitis is more severe in adults than in children. Mult Scler J. 2011;17:441–8.

    Article  CAS  Google Scholar 

  87. Singh S, Alexander M, Korah IP. Acute disseminated encephalomyelitis: MR imaging features. Am J Roentgenol. 1999;173:1101–7.

    Article  CAS  Google Scholar 

  88. Jain RS, Kumar S, Mathur T, et al. Longitudinally extensive transverse myelitis: a retrospective analysis of sixty-four patients at tertiary care center of North-West India. Clin Neurol Neurosurg. 2016;148:5–12.

    Article  PubMed  Google Scholar 

  89. Tobin WO, Weinshenker BG, Lucchinetti CF. Longitudinally extensive transverse myelitis. Curr Opin Neurol. 2014;27:279–89.

    Article  PubMed  Google Scholar 

  90. Dutra BG, José A, Rocha D, et al. Neuromyelitis optica spectrum disorders: spectrum of MR imaging findings and their differential diagnosis. Radiographics. 2018;38:169–93.

    Article  PubMed  Google Scholar 

  91. Kitley JL, Leite MI, George JS, et al. The differential diagnosis of longitudinally extensive transverse myelitis. Mult Scler J. 2012;18:271–85.

    Article  CAS  Google Scholar 

  92. Kister I, Johnson E, Raz E, et al. Specific MRI findings help distinguish acute transverse myelitis of Neuromyelitis Optica from spinal cord infarction. Mult Scler Relat Disord. 2016;9:62–7.

    Article  CAS  PubMed  Google Scholar 

  93. Ibitoye RT, Wilkins A, Scolding NJ. Neurosarcoidosis: a clinical approach to diagnosis and management. J Neurol. 2017;264:1023–8.

    Article  CAS  PubMed  Google Scholar 

  94. Smith JK, Matheus MG, Castillo M. Imaging manifestations of neurosarcoidosis. Am J Roentgenol. 2004;182:289–95.

    Article  Google Scholar 

  95. Kumar N, Frohman EM. Spinal neurosarcoidosis mimicking an idiopathic inflammatory demyelinating syndrome. Arch Neurol. 2004;61:586.

    Article  PubMed  Google Scholar 

  96. Soni N, Bathla G, Pillenahalli MR. Imaging findings in spinal sarcoidosis: a report of 18 cases and review of the current literature. Neuroradiol J. 2019;32:17–28.

    Article  PubMed  Google Scholar 

  97. Kasliwal MK, Harbhajanka A, Nag S, et al. Isolated spinal neurosarcoidosis: an enigmatic intramedullary spinal cord pathology-case report and review of the literature. J Craniovertebral Junction Spine. 2013;4:76–81.

    Article  Google Scholar 

  98. Junger SS, Stern BJ, Levine SR, et al. Intramedullary spinal sarcoidosis: clinical and magnetic resonance imaging characteristics. Neurology. 1993;43:333–7.

    Article  CAS  PubMed  Google Scholar 

  99. Saadi A, Rajashekara S. Intramedullary spinal neurosarcoidosis. Radiol Case Rep. 2012;7:739.

    Article  PubMed  Google Scholar 

  100. Koçer N, Islak C, Siva A, et al. CNS Involvement in Neuro-Behçet Syndrome: an MR study. AJNR Am J Neuroradiol. 1999;20:1015–24.

    PubMed  PubMed Central  Google Scholar 

  101. Liu H-M, Dong C, Zhang Y-Z, et al. Clinical and imaging features of spinal cord type of neuro Behçet disease: a case report and systematic review. Medicine. 2017;96:1–4.

    CAS  Google Scholar 

  102. Vargas M, Gariani J, Sztajzel R, et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. Am J Neuroradiol. 2015;36:825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Novy J, Carruzzo A, Maeder P, et al. Spinal cord ischemia. Arch Neurol. 2006;63:1113.

    Article  PubMed  Google Scholar 

  104. Yuh WT, Marsh EE, Wang AK, et al. MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol. 2015;13:145–54.

    Google Scholar 

  105. Masson C, Pruvo JP, Meder JF, et al. Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J Neurol Neurosurg Psychiatry. 2004;75:1431–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mawad ME, Rivera V, Ramirez A, et al. Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. Am J Roentgenol. 1990;155:1303–7.

    Article  CAS  Google Scholar 

  107. Kumral E, Polat F, Güllüoglu H, et al. Spinal ischaemic stroke: clinical and radiological findings and short-term outcome. Eur J Neurol. 2011;18:232–9.

    Article  CAS  PubMed  Google Scholar 

  108. Spetzler R, Detwiler P, Riina H, et al. Modified classification of spinal cord vascular lesions. J Neurosurg. 2002;96:145–56.

    PubMed  Google Scholar 

  109. Labauge P, Bouly S, Parker F, et al. Outcome in 53 patients with spinal cord cavernomas. Surg Neurol. 2008;70:176–81.

    Article  PubMed  Google Scholar 

  110. Sulochana S, Sundaram M. Cavernous hemangioma of the spinal cord: a rare case. J Clin Diagn Res. 2012;6:1781.

    PubMed  PubMed Central  Google Scholar 

  111. Ogilvy CS, Louis DN, Ojemann RG. Intramedullary cavernous angiomas of the spinal cord. Neurosurgery. 1992;31:219–30.

    Article  CAS  PubMed  Google Scholar 

  112. Singh R, Lucke-Wold B, Gyure K, et al. A review of vascular abnormalities of the spine. Ann Vasc Med Res. 2016;3:1045.

    PubMed  PubMed Central  Google Scholar 

  113. Jeon I, Jung WS, Suh SH, et al. MR imaging features that distinguish spinal cavernous angioma from hemorrhagic ependymoma and serial MRI changes in cavernous angioma. J Neuro-Oncol. 2016;130:229–36.

    Article  Google Scholar 

  114. Marsh WR. Vascular lesions of the spinal cord: history and classification. Neurosurg Clin N Am. 1999;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  115. Morris JM. Imaging of dural arteriovenous fistula. Radiol Clin N Am. 2012;50:823–39.

    Article  PubMed  Google Scholar 

  116. Gilbertson JR, Miller GM, Goldman MS, et al. Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol. 1995;16:2049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hurst RW, Grossman RI. Peripheral spinal cord hypointensity on T2-weighted MR images: a reliable imaging sign of venous hypertensive myelopathy. AJNR Am J Neuroradiol. 2000;21:781–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gupta P, Kumar A, Kumar A, et al. Congenital spinal cord anomalies: a pictorial review. Curr Probl Diagn Radiol. 2013;42:57–66.

    Article  PubMed  Google Scholar 

  119. Rufener SL, Ibrahim M, Raybaud CA, et al. Congenital spine and spinal cord malformations-pictorial review. Am J Roentgenol. 2010;194:S26–37.

    Article  Google Scholar 

  120. Breningstall GN, Marker SM, Tubman DE. Hydrosyringomyelia and diastematomyelia detected by MRI in myelomeningocele. Pediatr Neurol. 1992;8:267–71.

    Article  CAS  PubMed  Google Scholar 

  121. Sattar MT, Bannister CM, Turnbull IW. Occult spinal dysraphism – the common combination of lesions and the clinical manifestations in 50 patients. Eur J Pediatr Surg. 1996;6(Suppl 1):10–4.

    Article  PubMed  Google Scholar 

  122. Koen JL, McLendon RE, George TM. Intradural spinal teratoma: evidence for a dysembryogenic origin. J Neurosurg. 1998;89:844–51.

    Article  CAS  PubMed  Google Scholar 

  123. Huang SL, He XJ, Xiang L, et al. CT and MRI features of patients with diastematomyelia. Spinal Cord. 2014;52:689–92.

    Article  CAS  PubMed  Google Scholar 

  124. Marelli C, Salsano E, Politi LS, et al. Spinal cord involvement in adult-onset metabolic and genetic diseases neurogenetics. J Neurol Neurosurg Psychiatry. 2019;90:211–8.

    Article  PubMed  Google Scholar 

  125. Verrips A, Lycklama À, Nijeholt GJ, Barkhof F, et al. Spinal xanthomatosis: a variant of cerebrotendinous xanthomatosis. Brain. 1999;122:1589–95.

    Article  PubMed  Google Scholar 

  126. Bartholdi D, Zumsteg D, Verrips A, et al. Spinal phenotype of cerebrotendinous xanthomatosis. J Neurol. 2004;251:105–7.

    Article  CAS  PubMed  Google Scholar 

  127. Abe R, Sekijima Y, Kinoshita T, et al. Spinal form cerebrotendinous xanthomatosis patient with long spinal cord lesion. J Spinal Cord Med. 2016;39:726–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wolf NI, Toro C, Kister I, et al. DARS-associated leukoencephalopathy can mimic a steroid-responsive neuroinflammatory disorder. Neurology. 2015;84:226–30.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Labauge P, Dorboz I, Eymard-Pierre E, et al. Clinically asymptomatic adult patient with extensive LBSL MRI pattern and DARS2 mutations. J Neurol. 2011;258:335–7.

    Article  PubMed  Google Scholar 

  130. Labauge P, Roullet E, Boespflug-Tanguy O, et al. Familial, adult onset form of leukoencephalopathy with brain stem and spinal cord involvement: inconstant high brain lactate and very slow disease progression. Eur Neurol. 2007;58:59–61.

    Article  PubMed  Google Scholar 

  131. Finnsson J, Sundblom J, Dahl N, et al. LMNB1-related autosomal-dominant leukodystrophy: clinical and radiological course. Ann Neurol. 2015;78:412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van der Knaap MS, Ramesh V, Schiffmann R, et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 2006;66:494–8.

    Article  PubMed  Google Scholar 

  133. Girard B, Bonnemains C, Schmitt E, et al. Biotinidase deficiency mimicking neuromyelitis optica beginning at the age of 4: a treatable disease. Mult Scler J. 2017;23:119–22.

    Article  CAS  Google Scholar 

  134. Pfeffer G, Burke A, Yu-Wai-Man P, et al. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology. 2013;81:2073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu-Wai-Man P, Spyropoulos A, Duncan HJ, et al. A multiple sclerosis-like disorder in patients with OPA1 mutations. Ann Clin Transl Neurol. 2016;3:723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yilmaz S, Serin M, Canda E, et al. A treatable cause of myelopathy and vision loss mimicking neuromyelitis optica spectrum disorder: late-onset biotinidase deficiency. Metab Brain Dis. 2017;32:675–8.

    Article  PubMed  Google Scholar 

  137. Bottin L, Prud’hon S, Guey S, et al. Biotinidase deficiency mimicking neuromyelitis optica: initially exhibiting symptoms in adulthood. Mult Scler J. 2015;21:1604–7.

    Article  CAS  Google Scholar 

  138. Ernst LD, Brock K, Barraza LH, et al. Longitudinally extensive nitrous oxide myelopathy with novel radiographic features. JAMA Neurol. 2015;72:1370.

    Article  PubMed  Google Scholar 

  139. Loes DJ, Fatemi A, Melhem ER, et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology. 2003;61:369–74.

    Article  CAS  PubMed  Google Scholar 

  140. Mochel F, Schiffmann R, Steenweg ME, et al. Adult polyglucosan body disease: natural history and key magnetic resonance imaging findings. Ann Neurol. 2012;72:433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pareyson D, Fancellu R, Mariotti C, et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain. 2008;131:2321–31.

    Article  PubMed  Google Scholar 

  142. Farina L, Pareyson D, Minati L, et al. Can MR imaging diagnose adult-onset Alexander disease? Am J Neuroradiol. 2008;29:1190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Graff-Radford J, Schwartz K, Gavrilova RH, et al. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology. 2014;82:49–56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atsina, KB. (2020). MRI in Cord Lesions. In: Morrison, W., Carrino, J., Flanders, A. (eds) MRI of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-43627-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43627-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43626-1

  • Online ISBN: 978-3-030-43627-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics