Skip to main content

GAN-Based Steganography with the Concatenation of Multiple Feature Maps

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12022))

Included in the following conference series:

Abstract

Steganography has been widely used to conceal secret information in multimedia content. Using generative adversarial networks (GAN) where two subnetworks compete against each other, steganography can learn good distortion measurement. Nevertheless, the convergence speed of GAN is usually slow, and the performance of GAN-based steganography has large room to improve. In this paper, we propose a new GAN-based spatial steganographic scheme. The proposed learning framework consists of two parts: a steganographic generator and a steganalytic discriminator. The former generates stego images, and the latter evaluates their steganography security. Different from existing GAN-based steganography, we reconstruct the generator by combining multiple feature maps, and then expand the maximum number of feature channels to 256. The reconstruction generator can effectively generate a sophisticated probability map, which is used to calculate optimal distortion measurement and further provides a better guidance for adaptive information embedding. Comprehensive experimental results show that, with the same discriminant network, the anti-steganalysis performance of our method is better than that of ASDL-GAN scheme and Yang’s scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since RTX2080 GPU card has only 8 GB memory, 8 cover-stego pairs are the maximum number of images that the processor can process at one time.

References

  1. Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)

    Article  Google Scholar 

  2. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  3. Fridrich, J., Holub, V.: Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, WIFS 2012, pp. 234–239. IEEE (2012). https://doi.org/10.1109/WIFS.2012.6412655

  4. Li, B., Tan, S., Wang, M., Huang, J.: Investigation on cost assignment in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 9(8), 1264–1277 (2014)

    Article  Google Scholar 

  5. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  6. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  7. Xu, G., Wu, H., Shi, Y.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  8. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  9. Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24(10), 1547–1551 (2017)

    Article  Google Scholar 

  10. Yang, J., Liu, K., Kang, X., Wong, E.K.: Spatial image steganography based on generative adversarial network. arXiv:1804.07939 (2018)

  11. Li, F., Wu, K., Zhang, X., Yu, J., Lei, J., Wen, M.: Robust batch steganography in social networks with non-uniform payload and data decomposition. IEEE Access 6, 29912–29925 (2018)

    Article  Google Scholar 

  12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2016)

  13. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51

    Chapter  Google Scholar 

  14. Li, F., Zhang, X., Cheng, H., Jiang, Y.: Digital image steganalysis based on local textural features and double dimensionality reduction. Secur. Commun. Netw. 9(8), 729–736 (2016)

    Article  Google Scholar 

  15. Volkhonskiy, D., Nazarov, I., Borisenko, B., Burnaev, E.: Steganographic generative adversarial networks. arXiv:1703.05502 (2017)

  16. Li, F., Wu, K., Lei, J., Wen, M., Bi, Z., Gu, C.: Steganalysis over large-scale social networks with high-order joint features and clustering ensembles. IEEE Trans. Inf. Forensics Secur. 11(2), 344–357 (2016)

    Article  Google Scholar 

  17. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 (2017)

  18. Places365-Standard (2019). http://places2.csail.mit.edu/download.html. Accessed Mar 2019

  19. DDE Download (2019). http://dde.binghamton.edu/download/. Accessed Mar 2019

  20. Qian, Y., Dong, J., Wang W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics 2015, Proceedings of SPIE, vol. 9409 (2015). https://doi.org/10.1117/12.2083479

  21. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  22. Zhang Y., Zhang W., Chen K., et al.: Adversarial examples against deep neural network based steganalysis. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 67–72. ACM (2018)

    Google Scholar 

  23. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China under Grants (61602295, U1736120), the Foreign Visiting Scholar Program of Shanghai Municipal Education Commission and Postgraduate Innovation and Entrepreneurship Project of Shanghai University of Electric Power (A-0201-19-183Y-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Li, F., Zhang, X., Wu, K. (2020). GAN-Based Steganography with the Concatenation of Multiple Feature Maps. In: Wang, H., Zhao, X., Shi, Y., Kim, H., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2019. Lecture Notes in Computer Science(), vol 12022. Springer, Cham. https://doi.org/10.1007/978-3-030-43575-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43575-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43574-5

  • Online ISBN: 978-3-030-43575-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics