Skip to main content

Weakening Relation Algebras and FL\(^2\)-algebras

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12062))

Abstract

FL\(^2\)-algebras are lattice-ordered algebras with two sets of residuated operators. The classes RA of relation algebras and GBI of generalized bunched implication algebras are subvarieties of FL\(^2\)-algebras. We prove that the congruences of FL\(^2\)-algebras are determined by the congruence class of the respective identity elements, and we characterize the subsets that correspond to this congruence class. For involutive GBI-algebras the characterization simplifies to a form similar to relation algebras.

For a positive idempotent element p in a relation algebra \(\mathbf{A}\), the double division conucleus image \(p{\backslash }\mathbf{A}{/}p\) is an (abstract) weakening relation algebra, and all representable weakening relation algebras (RWkRAs) are obtained in this way from representable relation algebras (RRAs). The class \(S(\mathsf {dRA})\) of subalgebras of \(\{p{\backslash }\mathbf{A}{/}p:A\in \mathsf {RA}, 1\le p^2=p\in A\}\) is a discriminator variety of cyclic involutive GBI-algebras that includes RA. We investigate \(S(\mathsf {dRA})\) to find additional identities that are valid in all RWkRAs. A representable weakening relation algebra is determined by a chain if and only if it satisfies \(0\le 1\), and we prove that the identity \(1\le 0\) holds only in trivial members of \(S(\mathsf {dRA})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Hájek, P. (ed.) Lecture Notes Logic, vol. 6, pp. 23–33. Springer, Berlin (1996)

    Google Scholar 

  2. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebra Comput. 13(4), 437–461 (2003)

    Article  MathSciNet  Google Scholar 

  3. Brotherston, J., Calcagno, C.: Classical BI: its semantics and proof theory. Log. Methods Comput. Sci. 6(3), 42 (2010)

    Article  MathSciNet  Google Scholar 

  4. Di Nola, A., Grigolia, R., Vitale, G.: On the variety of Gödel MV-algebras. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04235-5

  5. Gabbay, D.M.: Fibring Logics. Oxford Logic Guides, vol. 38. The Clarendon Press, Oxford University Press, New York (1999)

    MATH  Google Scholar 

  6. Galatos, N., Jipsen, P.: Relation algebras as expanded FL-algebras. Algebra Univers. 69(1), 1–21 (2013)

    Article  MathSciNet  Google Scholar 

  7. Galatos, N., Jipsen, P.: Distributive residuated frames and generalized bunched implication algebras. Algebra Univers. 78(3), 303–336 (2017)

    Article  MathSciNet  Google Scholar 

  8. Galatos, N., Jipsen, P.: The structure of generalized BI-algebras and weakening relation algebras (2019, preprint). http://math.chapman.edu/jipsen/preprints/GalatosJipsenGBIsubmitted.pdf

  9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  10. Galatos, N., Ono, H.: Cut elimination and strong separation for substructural logics: an algebraic approach. Ann. Pure Appl. Logic 161(9), 1097–1133 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gil-Férez, J., Ledda, A., Paoli, F., Tsinakis, C.: Projectable l-groups and algebras of logic: categorical and algebraic connections. J. Pure Appl. Algebra 220(10), 3514–3532 (2016)

    Article  MathSciNet  Google Scholar 

  12. Jipsen, P.: Discriminator Varieties of Boolean Algebras with Residuated Operators. Algebraic Methods in Logic and in Computer Science, Warsaw 1991, Polish Academy of Science, Institute of Mathematics, Warsaw, vol. 28, pp. 239–252. Banach Center Publications (1993)

    Google Scholar 

  13. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched implication algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 144–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_9

    Chapter  MATH  Google Scholar 

  14. Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1967)

    Article  MathSciNet  Google Scholar 

  15. Jónsson, B.: Varieties of relation algebras. Algebra Univers. 15(3), 273–298 (1982)

    Article  MathSciNet  Google Scholar 

  16. Jónsson, B., Tarski, A.: Boolean algebras with operators. II. Amer. J. Math. 74, 127–162 (1952)

    Article  MathSciNet  Google Scholar 

  17. Jónsson, B., Tsinakis, C.: Relation algebras as residuated Boolean algebras. Algebra Univers. 30(4), 469–478 (1993)

    Article  MathSciNet  Google Scholar 

  18. McCune, W.: Prover9 and Mace4 (2005). https://www.cs.unm.edu/mccune/mace4/

  19. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375(1–3), 271–307 (2007)

    Article  MathSciNet  Google Scholar 

  20. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. APLS, vol. 26. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0091-7

    Book  MATH  Google Scholar 

  21. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22–25 July 2002, Copenhagen, Denmark, pp. 55-74 (2002)

    Google Scholar 

  22. Stell, J.G.: Relations on hypergraphs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33314-9_22

    Chapter  Google Scholar 

  23. Stell, J.G.: Symmetric Heyting relation algebras with applications to hypergraphs. J. Log. Algebr. Methods Program. 84(3), 440–455 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jipsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galatos, N., Jipsen, P. (2020). Weakening Relation Algebras and FL\(^2\)-algebras. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43520-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43519-6

  • Online ISBN: 978-3-030-43520-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics