Skip to main content

The Involutive Quantaloid of Completely Distributive Lattices

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12062))

Abstract

Let L be a complete lattice and let \({\mathcal {Q}}(L)\) be the unital quantale of join-continuous endo-functions of L. We prove that \({\mathcal {Q}}(L)\) has at most two cyclic elements, and that if it has a non-trivial cyclic element, then L is completely distributive and \({\mathcal {Q}}(L)\) is involutive (that is, non-commutative cyclic \(\star \)-autonomous). If this is the case, then the dual tensor operation corresponds, via Raney’s transforms, to composition in the (dual) quantale of meet-continuous endo-functions of L.

Let \(\mathsf {Latt}_{\bigvee } \) be the category of sup-lattices and join-continuous functions and let \(\mathsf {Latt}_{\bigvee } ^{\mathtt {cd}} \) be the full subcategory of \(\mathsf {Latt}_{\bigvee } \) whose objects are the completely distributive lattices. We argue that \(\mathsf {Latt}_{\bigvee } ^{\mathtt {cd}} \) is itself an involutive quantaloid, thus it is the largest full-subcategory of \(\mathsf {Latt}_{\bigvee }\) with this property. Since \(\mathsf {Latt}_{\bigvee } ^{\mathtt {cd}} \) is closed under the monoidal operations of \(\mathsf {Latt}_{\bigvee } \), we also argue that if \({\mathcal {Q}}(L)\) is involutive, then \({\mathcal {Q}}(L)\) is completely distributive as well; consequently, any lattice embedding into an involutive quantale of the form \({\mathcal {Q}}(L)\) has, as its domain, a distributive lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barr, M.: \(\ast \)-Autonomous Categories. Lecture Notes in Mathematics, vol. 752. Springer, Berlin (1979). https://doi.org/10.1007/BFb0064579

    Book  MATH  Google Scholar 

  2. Barr, M.: Nonsymmetric \({}^\ast \)-autonomous categories. Theor. Comput. Sci. 139(1–2), 115–130 (1995)

    Article  MathSciNet  Google Scholar 

  3. Dzhumadil’daev, A.S.: Worpitzky identity for multipermutations. Math. Notes 90(3), 448–450 (2011)

    Article  MathSciNet  Google Scholar 

  4. Eklund, P., Gutiérrez García, J., Höhle, U., Kortelainen, J.: Semigroups in Complete Lattices, Developments in Mathematics: Quantales, Modules and Related Topics, vol. 54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78948-4. With a foreword by Jimmie Lawson

    Book  MATH  Google Scholar 

  5. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  6. Gouveia, M.J., Santocanale, L.: MIX \(\star \)-autonomous quantales and the continuous weak order. In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol. 11194, pp. 184–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02149-8_12

    Chapter  MATH  Google Scholar 

  7. Higgs, D.A., Rowe, K.A.: Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57(1), 67–78 (1989)

    Article  MathSciNet  Google Scholar 

  8. Holland, C.: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J. 10, 399–408 (1963)

    Article  MathSciNet  Google Scholar 

  9. Howie, J.M.: Products of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17(2), 223–236 (1971)

    Article  MathSciNet  Google Scholar 

  10. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched implication algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 144–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_9

    Chapter  MATH  Google Scholar 

  11. Lambrou, M.S.: Completely distributive lattices. Fund. Math. 119(3), 227–240 (1983)

    Article  MathSciNet  Google Scholar 

  12. Laradji, A., Umar, A.: Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72(1), 51–62 (2006)

    Article  MathSciNet  Google Scholar 

  13. Meloni, G., Santocanale, L.: Relational semantics for distributive linear logic, August 1995, preprint. https://hal.archives-ouvertes.fr/hal-01851509

  14. Protin, M.C., Resende, P.: Quantales of open groupoids. J. Noncommut. Geom. 6(2), 199–247 (2012)

    Article  MathSciNet  Google Scholar 

  15. Raney, G.N.: A subdirect-union representation for completely distributive complete lattices. Proc. Am. Math. Soc. 4, 518–522 (1953)

    Article  MathSciNet  Google Scholar 

  16. Raney, G.N.: Tight Galois connections and complete distributivity. Trans. Am. Math. Soc. 97, 418–426 (1960)

    Article  MathSciNet  Google Scholar 

  17. Rosenthal, K.I.: A note on Girard quantalesa. Cahiers Topologie Géom. Différentielle Catég. 31(1), 3–11 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in Mathematics Series, vol. 234. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  19. Rosenthal, K.I.: Girard quantaloids. Math. Struct. Comput. Sci. 2(1), 93–108 (1992)

    Article  MathSciNet  Google Scholar 

  20. Rowe, K.A.: Nuclearity. Canad. Math. Bull. 31(2), 227–235 (1988)

    Article  MathSciNet  Google Scholar 

  21. Santocanale, L.: On discrete idempotent paths. In: Mercaş, R., Reidenbach, D. (eds.) WORDS 2019. LNCS, vol. 11682, pp. 312–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28796-2_25

    Chapter  MATH  Google Scholar 

  22. Santocanale, L., Gouveia, M.J.: The continuous weak order, December 2018, preprint. https://hal.archives-ouvertes.fr/hal-01944759

  23. Stubbe, I.: Towards “dynamic domains”: totally continuous cocomplete \(Q\)-categories. Theor. Comput. Sci. 373(1–2), 142–160 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The author is thankful to Srecko Brlek, Claudia Muresan, and André Joyal for the fruitful discussions these scientists shared with him on this topic during winter 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Santocanale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santocanale, L. (2020). The Involutive Quantaloid of Completely Distributive Lattices. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43520-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43519-6

  • Online ISBN: 978-3-030-43520-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics