Skip to main content

Counting and Computing Join-Endomorphisms in Lattices

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12062))

Abstract

Structures involving a lattice and join-endomorphisms on it are ubiquitous in computer science. We study the cardinality of the set \({\mathcal {E}}(L)\) of all join-endomorphisms of a given finite lattice \(L\). In particular, we show that when \(L\) is \(\mathbf {M}_n\), the discrete order of n elements extended with top and bottom, \(| {\mathcal {E}}(L) | =n!{\mathcal L}_{n}(-1)+(n+1)^2\) where \({\mathcal L}_{n}(x)\) is the Laguerre polynomial of degree n. We also study the following problem: Given a lattice L of size n and a set \(S\subseteq {\mathcal {E}}(L)\) of size m, find the greatest lower bound . The join-endomorphism has meaningful interpretations in epistemic logic, distributed systems, and Aumann structures. We show that this problem can be solved with worst-case time complexity in \(O(n+ m\log {n})\) for powerset lattices, \(O(mn^2)\) for lattices of sets, and \(O(mn + n^3)\) for arbitrary lattices. The complexity is expressed in terms of the basic binary lattice operations performed by the algorithm.

This work has been partially supported by the ECOS-NORD project FACTS (C19M03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that we give time complexities in terms of the number of basic binary lattice operations (i.e., meets, joins and subtractions) performed during execution.

References

  1. Birkhoff, G.: Lattice Theory, vol. 25, p. 2. American Mathematical Society Colloquium, American Mathematical Society (1967)

    Google Scholar 

  2. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_14

    Chapter  Google Scholar 

  3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  4. Duffus, D., Rodl, V., Sands, B., Woodrow, R.: Enumeration of order preserving maps. Order 9(1), 15–29 (1992)

    Article  MathSciNet  Google Scholar 

  5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. Grätzer, G., Schmidt, E.: On the lattice of all join-endomorphisms of a lattice. Proc. Am. Math. Soc. 9, 722–722 (1958)

    Article  MathSciNet  Google Scholar 

  7. Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge, lies and other utterances in an algebra for space and extrusion. J. Log. Algebr. Meth. Program. 86(1), 107–133 (2017)

    Article  MathSciNet  Google Scholar 

  8. Guzmán, M., Knight, S., Quintero, S., Ramírez, S., Rueda, C., Valencia, F.D.: Reasoning about distributed knowledge of groups with infinitely many agents. In: 30th International Conference on Concurrency Theory, CONCUR 2019, vol. 29, pp. 1–29 (2019)

    Google Scholar 

  9. Habib, M., Nourine, L.: Tree structure for distributive lattices and its applications. Theor. Comput. Sci. 165(2), 391–405 (1996)

    Article  MathSciNet  Google Scholar 

  10. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched implication algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 144–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_9

    Chapter  MATH  Google Scholar 

  11. Jipsen, P., Lawless, N.: Generating all finite modular lattices of a given size. Algebra universalis 74(3), 253–264 (2015). https://doi.org/10.1007/s00012-015-0348-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_23

    Chapter  Google Scholar 

  13. Quintero, S., Ramírez, S., Rueda, C., Valencia, F.D.: Counting and computing join-endomorphisms in lattices. Research report, LIX, Ecole polytechnique; INRIA Saclay - Ile-de-France (2019). https://hal.archives-ouvertes.fr/hal-02422624

  14. Ronse, C.: Why mathematical morphology needs complete lattices. Sig. Process. 21(2), 129–154 (1990)

    Article  MathSciNet  Google Scholar 

  15. Rueda, C., Valencia, F.: On validity in modelization of musical problems by CCP. Soft. Comput. 8(9), 641–648 (2004)

    Article  Google Scholar 

  16. Santocanale, L.: On discrete idempotent paths. In: Mercaş, R., Reidenbach, D. (eds.) WORDS 2019. LNCS, vol. 11682, pp. 312–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28796-2_25

    Chapter  MATH  Google Scholar 

  17. Stell, J.: Why mathematical morphology needs quantales. In: Wilkinson, M., Roerdink, J. (eds.) International Symposium on Mathematical Morphology, ISMM09, pp. 13–16. Institute for Mathematics and Computing Science, University of Groningen (2009)

    Google Scholar 

Download references

Acknowledgments

We are indebted to the anonymous referees and editors of RAMICS 2020 for helping us to improve one of the complexity bounds, some proofs, and the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Quintero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quintero, S., Ramirez, S., Rueda, C., Valencia, F. (2020). Counting and Computing Join-Endomorphisms in Lattices. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43520-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43519-6

  • Online ISBN: 978-3-030-43520-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics