Skip to main content

Stone Dualities from Opfibrations

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2020)

Abstract

Stone dualities are dual equivalences between certain categories of algebras and those of topological spaces. A Stone duality is often derived from a dual adjunction between such categories by cutting down unnecessary objects. This dual adjunction is called the fundamental adjunction of the duality, but building it often requires concrete topological arguments. The aim of this paper is to construct fundamental adjunctions generically using (co)fibered category theory. This paper defines an abstract notion of formal spaces (including ordinary topological spaces as the leading example), and gives a construction of a fundamental adjunction between the category of algebras and the category of corresponding formal spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Grothendieck originally called it cofibred categories, but here we use the word opfibration to avoid confusion with cofibration in homotopy theory.

References

  1. Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  2. Johnstone, P.: The point of pointless topology. Bull. Am. Math. Soc. (N.S.) 8(1), 41–53 (1983)

    Google Scholar 

  3. Isbell, J.R.: General functorial semantics I. Am. J. Math. 97, 535–590 (1972)

    Article  MathSciNet  Google Scholar 

  4. Simmons, H.: A couple of triples. Topol. Appl. 13(2), 201–223 (1982)

    Article  MathSciNet  Google Scholar 

  5. Dimov, G., Tholen, W.: A characterization of representable dualities. In: Adamek, J., MacLane, S. (eds.) Categorical Topology and Its Relation to Analysis, pp. 336–357. World Scientific, Algebra and Combinatorics (1989)

    Google Scholar 

  6. Porst, H.E., Tholen, W.: Concrete dualities. In: Herrlich, H., Porst, H.E. (eds.) Category Theory at Work, pp. 111–136. Heldermann Verlag, Berlin (1991)

    Google Scholar 

  7. Barr, M., Kennison, J.F., Raphael, R.: Isbell duality. Theor. Appl. Categories 20(15), 504–542 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Maruyama, Y.: Categorical duality theory: with applications to domains, convexity, and the distribution monad, pp. 500–520 (2013)

    Google Scholar 

  9. Hermida, C.: Fibrations, logical predicates and related topics. Ph.D. thesis, University of Edinburgh (1993). Technical report ECS-LFCS-93-277. Also available as Aarhus Univ. DAIMI Technical report PB-462 (1993)

    Google Scholar 

  10. Barr, M.: *-Autonomous Categories. Number 752 in Lecture Notes in Mathematics. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0064579

    Book  MATH  Google Scholar 

  11. Pratt, V.: Chu spaces. In: Notes for the School on Category Theory and Applications, University of Coimbra, July 13–17 1999 (1999)

    Google Scholar 

  12. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Number 57 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  13. Jacobs, B.: Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (1999)

    Google Scholar 

  14. Johnstone, P.: Remarks on punctual local connectedness. Theor. Appl. Categories 25(3), 51–63 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Borceux, F.: Handbook of Categorical Algebra. Volume 1 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  16. Rosický, J., Tholen, W.: Factorization, fibration and torsion. J. Homotopy Relat. Struct. 2(2), 295–314 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1978)

    Book  Google Scholar 

  18. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  19. Pavlovic, D.: Chu I: cofree equivalences, dualities and *-autonomous categories. Math. Struct. Comput. Sci. 7(1), 4973 (1997)

    Article  MathSciNet  Google Scholar 

  20. Blyth, T.: Lattices and Ordered Algebraic Structures. Springer, London (2005). https://doi.org/10.1007/b139095

    Book  MATH  Google Scholar 

  21. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  22. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theor. Comput. Sci. 327(1–2), 109–134 (2004)

    Article  MathSciNet  Google Scholar 

  23. Rocca, S.R.D. (ed.): Computer Science Logic 2013 (CSL 2013), CSL 2013, Torino, Italy, 2–5 September 2013. Volume 23 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

Download references

Acknowledgments

This work was the supported by JSPS KAKENHI Grant Number JP24700017. The second and third authors carried out this research under the support of JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Nishizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nishizawa, K., Katsumata, Sy., Komorida, Y. (2020). Stone Dualities from Opfibrations. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43520-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43519-6

  • Online ISBN: 978-3-030-43520-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics