Skip to main content

Statistical Analysis of High-Frequency pCO2 Data Acquired with the ASTAN buoy (South-Western English Channel, Off Roscoff)

  • Conference paper
  • First Online:
Book cover Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes

Abstract

Since 2007, in the context of the SOMLIT network, we installed a CTD (SeaBird SBE19+) below the ASTAN buoy located in the Western English Channel (WEC) off Roscoff (48° 46′ 40 N 3° 56′ 15 W; depth 5 m) between the SOMLIT-Coast and SOMLIT-Offshore sampling sites. These sensors provided high-frequency (HF) measurements (hourly) of sea surface salinity (SSS), sea surface temperature (SST), fluorescence and dissolved oxygen (DO) all year. Since 2014, we added a SAMI-CO2 sensor, which measured the sea surface partial pressure of CO2 (pCO2) to investigate the seasonal dynamic of the pCO2 and associated air-sea CO2 exchange at the ASTAN site. From this high-frequency database, we were able to separate the signal according to the tide to determine the physicochemical and biological characteristics of two water masses: the coastal water mass (CWM) and the offshore water mass (OWM). These two water masses were strongly influenced by the biological productivity of the environment, more importantly in the CWM, and limited by the available light. Surface waters at the ASTAN site were near equilibrium with the atmosphere with an annual air-sea flux of 0.12 mmol C m−2 d−1 during 2016. The year can be divided into three distinct regimes: at the beginning of the year (winter period), the ASTAN site was a source of CO2, controlled by thermodynamic at 1.23 mmol C m−2 d−1, from April to September (spring–summer), it became a sink of CO2 with an important impact of biological activity (−0.64 mmol C m−2 d−1), and at the end of the year (fall), it reversed to a weaker source of CO2 at 0.26 mmol C m−2 d−1. In order to further assess the signal, we used signal processing tools such as wavelet analysis. From the frequency/time representation, it was possible to follow how the signal varied over time, and thus deduce the presence of the two water masses due to the tidal effect, but also observes a significant impact of the day/night cycle on the biological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boalch GT, Harbour DS, Butler EI (1978) Seasonal phytoplankton production in the Western English Channel 1964–1974. J Mar Biol Assoc United Kingdom 58(4):943–953

    Article  Google Scholar 

  • Borges AV, Frankignoulle M (1999) Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. J Mar Syst 19(4):251–266

    Article  Google Scholar 

  • Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70(3):375–387

    Article  CAS  Google Scholar 

  • Borges AV, Frankignoulle M (2003) Distribution of surface carbon dioxide and air‐sea exchange in the English Channel and adjacent areas. J Geophys Res Oceans 108(C5)

    Google Scholar 

  • Bozec Y, Cariou T, Macé E, Morin P, Thuillier D, Vernet M (2012) Seasonal dynamics of air-sea CO2 fluxes in the inner and outer Loire estuary (NW Europe). Estuar Coast Shelf Sci 100:58–71

    Article  CAS  Google Scholar 

  • Bozec Y, Thomas H, Elkalay K, de Baar HJW (2005) The continental shelf pump for CO2 in the North Sea–evidence from summer observation. Mar Chem 93(2–4):131–147

    Article  CAS  Google Scholar 

  • Bozec Y, Thomas H, Schiettecatte L-S, Borges A, Elkalay K, de Baar HJW (2006) Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea. Limnol Oceanogr 51(6):2746–2762

    Article  CAS  Google Scholar 

  • Chavez FP, Takahashi T, Cai WJ, Friederich G, Hales B, Wanninkhof R, Feely RA (2007) Coastal oceans. The First State of the Carbon Cycle Report (SOCCR): The North American carbon budget and implications for the global carbon cycle, pp 157–166

    Google Scholar 

  • Chierici M, Fransson A, Anderson LG (1999) Influence of m-cresol purple indicator additions on the pH of seawater samples: correction factors evaluated from a chemical speciation model. Mar Chem 65:281–290

    Article  CAS  Google Scholar 

  • Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part I 40(10):2115–2129

    Article  CAS  Google Scholar 

  • Collignon J (1991) Ecologie et biologie marine introduction à l’halieutique. Masson, InfoMer

    Google Scholar 

  • De Moortel I, Munday SA, Hood AW (2004) Wavelet analysis: the effect of varying basic wavelet parameters. Sol Phys 222(2):203–228

    Article  Google Scholar 

  • DeGrandpre MD, Hammar TR, Wallace DW, Wirick CD (1997) Simultaneous mooring‐based measurements of seawater CO2 and O2 off Cape Hatteras, North Carolina. Limnol Oceanogr 42(1):21–28

    Google Scholar 

  • Degrandpre MD, Hammar TR, Wallace Douglas WR, Wirick CD (2010) Simultaneous mooring‐based measurements of seawater CO2 and O2 off Cape Hatteras, North Carolina. Limnol Oceanogr 42(1): 21–28 (ACT DS10-04. Performance Demonstration Statement Sunburst Sensor SAMI-CO2)

    Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep sea research part A. Oceanogr Res Papers 37(5):755–766

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part I 34(10):1733–1743

    Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Kitack L, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    Article  CAS  Google Scholar 

  • Frankignoulle M, Borges AV (2001) European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochem Cycles 15(3):569–576

    Article  CAS  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77(920):661–671

    CAS  Google Scholar 

  • Hales B, Cai W-J, Mitchell BG, Sabine C-L, Schofield O (2008) North American continental margins: a synthesis and planning workshop. U.S. Carbon Cycle Sci. Program, Washington, D.C., 110p

    Google Scholar 

  • Haraldsson C, Anderson LG, Hassellöv M, Hulth S, Olsson K (1997) Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep Sea Res Part I 44(12):2031–2044

    Article  CAS  Google Scholar 

  • IPCC, Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment. In: Arar EJ, Collins GB (eds) Report of the intergovernmental panel on climate change. Edited by S Solomon, D Quin, M Manning, Z Chen, M Marquis

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Kelly-Gerreyn BA, Hydes DJ, Jegou AM, Lazure P, Fernand LJ, Puillat I, García-Soto C (2006) Low salinity intrusions in the western english channel. Cont Shelf Res 26(11):1241–1257

    Google Scholar 

  • Laruelle GG, Lauerwald R, Pfeil B, Regnier P (2014) Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochem Cycles 28(11):1199–1214

    Article  CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836

    Article  Google Scholar 

  • Le Quéré C, Takahashi T, Buitenhuis ET, Rdenbeck C, Sutherland SC (2010) Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochem Cycles 24(4)

    Google Scholar 

  • L’Helguen S, Madec C, Le Corre P (1996) Nitrogen uptake in permanently well-mixed temperate coastal waters. Estuar Coast Shelf Sci 42(6):803–818

    Article  Google Scholar 

  • Litt EJ, Hardman-Mountford NJ, Blackford JC, Mitchelson-Jacob EG, Goodman A, Moore GF, Cummings DG, Butenschon M (2010) Biological control of pCO2 at station L4 in the Western English Channel over 3 years. J Plankton Res 32(5):621–629

    Article  CAS  Google Scholar 

  • Liu K-K, Atkinson L, Quinones RA, Taleue-Mcmanus L (2010) Biogeochemistry of the continental margins in a global context. In K-K Liu et al (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin, pp 3–24, https://doi.org/10.1007/978-3-540-92735-8_1

  • Marrec P, Cariou T, Mace E et al (2014) Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel. In: EGU general assembly conference abstracts

    Google Scholar 

  • Marrec P, Cariou T, Latimier M, Macé E, Morin P, Vernet M, Bozec Y (2014b) Spatio-temporal dynamics of biogeochemical processes and air–sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment. J Mar Syst 140:26–38

    Article  Google Scholar 

  • Marrec P, Cariou T, Macé É, Morin P, Salt LA, Vernet M, Taylor B, Paxman K, Bozec Y (2015) Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations. Biogeosciences 12(18):5371–5391

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907

    Article  CAS  Google Scholar 

  • Millero FJ (2010) Carbonate constants for estuarine waters. Mar Freshw Res 61(2):139–142

    Article  CAS  Google Scholar 

  • Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107(2):308–341

    Article  CAS  Google Scholar 

  • Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59(4):661–677

    Article  CAS  Google Scholar 

  • Millero FJ, Huang F, Graham T, Pierrot D (2007) The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim Cosmochim Acta 71(1):46–55

    Article  CAS  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14(1):373–387

    Article  CAS  Google Scholar 

  • Park PK (1969) Oceanic CO2 system: an evaluation of ten methods of investigation. Limnol Oceanogr 14(2):179–186

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Ribas-Ribas M, Anfuso E, Gómez-Parra A, Forja JM (2013) Tidal and seasonal carbon and nutrient dynamics of the Guadalquivir estuary and the Bay of Cádiz (SW Iberian Peninsula). Biogeosciences 10(7):4481–4491

    Article  Google Scholar 

  • Santos CAG, Galvao CO, Trigo RM (2003) Rainfall data analysis using wavelet transform. Int Assoc Hydrol Sci Publ 278:195–201

    Google Scholar 

  • Schiettecatte L‐S, Gazeau F, Van Der Zee C, Brion N, Borges AV (2006) Time series of the partial pressure of carbon dioxide (2001–2004) and preliminary inorganic carbon budget in the Scheldt plume (Belgian coastal waters). Geochem Geophys Geosyst 7(6)

    Google Scholar 

  • Schiettecatte L-S, Thomas H, Bozec Y, Borges AV (2007) High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea. Mar Chem 106(1–2):161–173

    Article  CAS  Google Scholar 

  • Smyth TJ, Fishwick JR, Al-Moosawi L et al (2009) A broad spatio-temporal view of the Western English Channel observatory. J Plankton Res 32(5):585–601

    Google Scholar 

  • Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal variation of CO2 and nutrients in the high‐latitude surface oceans: A comparative study. Global Biogeochem Cycles 7(4):843–878

    Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res Part II 49(9–10):1601–1622

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res Part II 56(8):554–577

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Neberger T, Sweeney C (2014) Climatological distributions of pH, pCO2, Total CO2, Alkalinity and CaCO3 saturation in the global surface ocean. ORNL/CIAC-16, NDP-094. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Rige, TN, 41 p

    Google Scholar 

  • Thomas H, Bozec Y, de Baar HJW, Elkalay K, Frankignoulle M, Schiettecatte  L-S, Kattner G, Borges AV, (2005) The carbon budget of the North Sea. Biogeosciences 2 (1):87–96

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  Google Scholar 

  • Wafar MVM, Le Corre P, Birrien JL (1983) Nutrients and primary production in permanently well-mixed temperate coastal waters. Estuar Coast Shelf Sci 17(4):431–446

    Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8(4):347–359

    Article  CAS  Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. In: Deep sea research and oceanographic abstracts. Elsevier, Amsterdam, pp 721–735

    Google Scholar 

  • Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the “Service des phares et balises” for providing access to the ASTAN buoy and the “Service Mer” of the Station Biologique de Roscoff for their valuable support during weekly sampling at sea. We thank M. Ramonet for providing the atmospheric CO2 data from the RAMCES network (Observatory Network for Greenhouse gases). We thank G. Charria for his help with the wavelet frequency analysis. We thank the SOMLIT network (Service d’Obervation du Milieu LIToral) for providing oceanographic data at the SOMLIT sited. This work was funded by the European Project JERICO-Next, by the “Conseil Départemental du Finistère” (CD29), by the “Region Bretagne” (program ARED, project Hi-Tech) and by INSU (program LEFE/CYBER, project CHANNEL). Y.B. is P.I. of the CHANNEL project and associate researcher (CR1) at CNRS. J.-P. Gac holds a PhD grant from the “Région Bretagne” and Sorbonne University (ED129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Gac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gac, JP., Cariou, T., Macé, É., Vernet, M., Bozec, Y. (2020). Statistical Analysis of High-Frequency pCO2 Data Acquired with the ASTAN buoy (South-Western English Channel, Off Roscoff). In: Ceccaldi, HJ., Hénocque, Y., Komatsu, T., Prouzet, P., Sautour, B., Yoshida, J. (eds) Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes. Springer, Cham. https://doi.org/10.1007/978-3-030-43484-7_5

Download citation

Publish with us

Policies and ethics