Skip to main content

Pathophysiology of Right Heart Disease in Chronic Lung Disease

  • Chapter
  • First Online:
Cardiac Considerations in Chronic Lung Disease

Part of the book series: Respiratory Medicine ((RM))

  • 522 Accesses

Abstract

Different chronic lung diseases (CLDs) are associated with varying degrees of right heart dysfunction. The pathophysiology of right heart disease in chronic lung disease is complex, and mechanisms include pulmonary hypertension, hypoxia, neurohormonal alterations, metabolic perturbations, endothelial dysfunction, ischemia, and systemic inflammation. The right ventricle can develop adaptive or maladaptive responses to these processes, and varying degrees of right heart dysfunction can ensue. Clinical management is currently focused on management of underlying lung disease and pulmonary hypertension, but as pathophysiologic mechanisms become better understood, new therapeutic targets, including those that focus directly on the right ventricle, may emerge. In this chapter, we provide a comprehensive review of normal physiology as well as the pathophysiology of the right heart and pulmonary circulation in chronic lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dell'Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30(2):167–87.

    Article  PubMed  Google Scholar 

  2. Redington AN, Gray HH, Hodson ME, Rigby ML, Oldershaw PJ. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J. 1988;59(1):23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Organization WH. Chronic Cor Pulmonale: report of an expert committee. World Health Organization Technical Report Series 1961;No. 213.

    Google Scholar 

  4. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med. 1994;150(3):833–52.

    Article  CAS  PubMed  Google Scholar 

  5. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med. 1994;150(4):1158–68.

    Article  CAS  PubMed  Google Scholar 

  6. Zangiabadi A, De Pasquale CG, Sajkov D. Pulmonary hypertension and right heart dysfunction in chronic lung disease. Biomed Res Int. 2014;2014:739674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hilde JM, Skjorten I, Grotta OJ, Hansteen V, Melsom MN, Hisdal J, et al. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol. 2013;62(12):1103–11.

    Article  PubMed  Google Scholar 

  8. Carlsen J, Hasseriis Andersen K, Boesgaard S, Iversen M, Steinbruchel D, Bogelund AC. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease. J Heart Lung Transplant. 2013;32(3):347–54.

    Article  PubMed  Google Scholar 

  9. Andersen KH, Andersen CB, Gustafsson F, Carlsen J. Pulmonary venous remodeling in COPD-pulmonary hypertension and idiopathic pulmonary arterial hypertension. Pulm Circ. 2017;7(2):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matthay RA, Arroliga AC, Wiedemann HP, Schulman DS, Mahler DA. Right ventricular function at rest and during exercise in chronic obstructive pulmonary disease. Chest. 1992;101(5 Suppl):255S–62S.

    Article  CAS  PubMed  Google Scholar 

  11. Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med. 2013;91(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  12. Vergadi E, Chang MS, Lee C, Liang OD, Liu X, Fernandez-Gonzalez A, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011;123(18):1986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol. 2014;193(2):597–609.

    Article  PubMed  CAS  Google Scholar 

  14. Philip K, Mills TW, Davies J, Chen NY, Karmouty-Quintana H, Luo F, et al. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis. FASEB J. 2017;31(11):4745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karmouty-Quintana H, Zhong H, Acero L, Weng T, Melicoff E, West JD, et al. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB J. 2012;26(6):2546–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karmouty-Quintana H, Weng T, Garcia-Morales LJ, Chen NY, Pedroza M, Zhong H, et al. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49(6):1038–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maston LD, Jones DT, Giermakowska W, Howard TA, Cannon JL, Wang W, et al. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L609–L24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993;328(24):1732–9.

    Article  CAS  PubMed  Google Scholar 

  19. Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proc Am Thorac Soc. 2012;9(3):130–6.

    Article  CAS  PubMed  Google Scholar 

  20. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, et al. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation. 2009;119(4):566–76.

    Article  CAS  PubMed  Google Scholar 

  21. Chen NY, Chen NY, D Collum S, Luo F, Weng T, Le TT, M Hernandez A, et al. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and group III pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L238–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(6):670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Investig. 2013;43(8):855–65.

    Article  CAS  Google Scholar 

  25. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A. 2007;104(4):1342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Platoshyn O, Yu Y, Golovina VA, McDaniel SS, Krick S, Li L, et al. Chronic hypoxia decreases K(V) channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol. 2001;280(4):L801–12.

    Article  CAS  PubMed  Google Scholar 

  27. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2000;279(5):C1540–9.

    Article  CAS  PubMed  Google Scholar 

  28. Burg ED, Remillard CV, Yuan JX. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol. 2008;153(Suppl 1):S99–S111.

    CAS  PubMed  Google Scholar 

  29. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007;104(27):11418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX. Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol. 2001;281(4):L887–94.

    Article  CAS  PubMed  Google Scholar 

  31. Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G, et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res. 2017;18(1):201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.

    Article  CAS  PubMed  Google Scholar 

  33. Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance–a review. J Clin Pathol. 1983;36(8):938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morrell NW, Atochina EN, Morris KG, Danilov SM, Stenmark KR. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 1995;96(4):1823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan YM, Luo L, Guo Z, Yang M, Ye RS, Luo C. Activation of renin-angiotensin-aldosterone system (RAAS) in the lung of smoking-induced pulmonary arterial hypertension (PAH) rats. J Renin Angiotensin Aldosterone Syst. 2015;16(2):249–53.

    Article  CAS  PubMed  Google Scholar 

  36. Orte C, Polak JM, Haworth SG, Yacoub MH, Morrell NW. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol. 2000;192(3):379–84.

    Article  CAS  PubMed  Google Scholar 

  37. de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, Francois C, et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(8):780–9.

    Article  PubMed  CAS  Google Scholar 

  38. Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med. 2000;161(6):1999–2004.

    Article  CAS  PubMed  Google Scholar 

  39. da Silva Goncalves Bos D, Happe C, Schalij I, Pijacka W, Paton JFR, Guignabert C, et al. Renal denervation reduces pulmonary vascular remodeling and right ventricular diastolic stiffness in experimental pulmonary hypertension. JACC Basic Transl Sci. 2017;2(1):22–35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamakami T, Taguchi O, Gabazza EC, Yoshida M, Kobayashi T, Kobayashi H, et al. Arterial endothelin-1 level in pulmonary emphysema and interstitial lung disease. Relation with pulmonary hypertension during exercise. Eur Respir J. 1997;10(9):2055–60.

    Article  CAS  PubMed  Google Scholar 

  41. Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weitzenblum E. Chronic cor pulmonale. Heart. 2003;89(2):225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fishman AP. State of the art: chronic cor pulmonale. Am Rev Respir Dis. 1976;114(4):775–94.

    CAS  PubMed  Google Scholar 

  44. Seeger WAY, Barberà JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs S, Martinez FJ, Semigran MJ, Simonneau G, Wells AU, Vachiéry JL. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 (Suppl)):D109–16.

    Article  PubMed  Google Scholar 

  45. Forfia PR, Vaidya A, Wiegers SE. Pulmonary heart disease: the heart-lung interaction and its impact on patient phenotypes. Pulm Circ. 2013;3(1):5–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):20–2.

    Article  PubMed  Google Scholar 

  47. Oswald-Mammosser M, Weitzenblum E, Quoix E, Moser G, Chaouat A, Charpentier C, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest. 1995;107(5):1193–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lettieri CJ, Nathan SD, Barnett SD, Ahmad S, Shorr AF. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest. 2006;129(3):746–52.

    Article  PubMed  Google Scholar 

  49. Boutou AK, Pitsiou GG, Trigonis I, Papakosta D, Kontou PK, Chavouzis N, et al. Exercise capacity in idiopathic pulmonary fibrosis: the effect of pulmonary hypertension. Respirology. 2011;16(3):451–8.

    Article  PubMed  Google Scholar 

  50. Minai OA, Santacruz JF, Alster JM, Budev MM, McCarthy K. Impact of pulmonary hemodynamics on 6-min walk test in idiopathic pulmonary fibrosis. Respir Med. 2012;106(11):1613–21.

    Article  PubMed  Google Scholar 

  51. Weitzenblum EHC, Ducolone A, Mirhom R, Rasaholinjanahary R, Ehrhart M. Prognostic value of pulmonary artery pressure in chronic obstructive pulmonary disease. Thorax. 1981;36:752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D’Andrea A, Stanziola A, Di Palma E, Martino M, D’Alto M, Dellegrottaglie S, et al. Right ventricular structure and function in idiopathic pulmonary fibrosis with or without pulmonary hypertension. Echocardiography. 2016;33(1):57–65.

    Article  PubMed  Google Scholar 

  53. Rubin LJ. Cor pulmonale revisited. J Am Coll Cardiol. 2013;62(12):1112–3.

    Article  PubMed  Google Scholar 

  54. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    Article  PubMed  Google Scholar 

  55. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38(4):1137–42.

    Article  CAS  PubMed  Google Scholar 

  56. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747–62.

    Article  CAS  PubMed  Google Scholar 

  57. Ciarka A, Doan V, Velez-Roa S, Naeije R, van de Borne P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;181(11):1269–75.

    Article  PubMed  Google Scholar 

  58. Heindl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164(4):597–601.

    Article  CAS  PubMed  Google Scholar 

  59. van Gestel AJ, Steier J. Autonomic dysfunction in patients with chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2010;2(4):215–22.

    PubMed  PubMed Central  Google Scholar 

  60. Andreas S, Haarmann H, Klarner S, Hasenfuss G, Raupach T. Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung. 2014;192(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  61. Dempsey JA, Sheel AW, St Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol. 2002;130(1):3–20.

    Article  PubMed  Google Scholar 

  62. Levine S, Nguyen T, Kaiser LR, Rubinstein NA, Maislin G, Gregory C, et al. Human diaphragm remodeling associated with chronic obstructive pulmonary disease: clinical implications. Am J Respir Crit Care Med. 2003;168(6):706–13.

    Article  PubMed  Google Scholar 

  63. Hofford JM, Milakofsky L, Vogel WH, Sacher RS, Savage GJ, Pell S. The nutritional status in advanced emphysema associated with chronic bronchitis. A study of amino acid and catecholamine levels. Am Rev Respir Dis. 1990;141(4 Pt 1):902–8.

    Article  CAS  PubMed  Google Scholar 

  64. Anand IS, Chandrashekhar Y, Ferrari R, Sarma R, Guleria R, Jindal SK, et al. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation. 1992;86(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  65. Piao L, Fang YH, Parikh KS, Ryan JJ, D’Souza KM, Theccanat T, et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation. 2012;126(24):2859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  CAS  PubMed  Google Scholar 

  67. Morrell NW, Danilov SM, Satyan KB, Morris KG, Stenmark KR. Right ventricular angiotensin converting enzyme activity and expression is increased during hypoxic pulmonary hypertension. Cardiovasc Res. 1997;34(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  68. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033–44.

    Article  PubMed  Google Scholar 

  69. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45(11):1849–55.

    Article  CAS  PubMed  Google Scholar 

  70. Tatebe S, Fukumoto Y, Oikawa-Wakayama M, Sugimura K, Satoh K, Miura Y, et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. Eur Heart J Cardiovasc Imaging. 2014;15(6):666–72.

    Article  PubMed  Google Scholar 

  71. Nagaya N, Goto Y, Satoh T, Uematsu M, Hamada S, Kuribayashi S, et al. Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med. 1998;39(10):1676–80.

    CAS  PubMed  Google Scholar 

  72. Gomez-Arroyo J, Mizuno S, Szczepanek K, Van Tassell B, Natarajan R, dos Remedios CG, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail. 2013;6(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  73. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med. 2010;88(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  74. Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, et al. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  75. Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675–91.

    Article  CAS  PubMed  Google Scholar 

  77. Vonk-Noordegraaf A, Marcus JT, Holverda S, Roseboom B, Postmus PE. Early changes of cardiac structure and function in COPD patients with mild hypoxemia. Chest. 2005;127(6):1898–903.

    Article  PubMed  Google Scholar 

  78. Overbeek MJ, Mouchaers KT, Niessen HM, Hadi AM, Kupreishvili K, Boonstra A, et al. Characteristics of interstitial fibrosis and inflammatory cell infiltration in right ventricles of systemic sclerosis-associated pulmonary arterial hypertension. Int J Rheumatol. 2010;2010. pii: 604615. https://doi.org/10.1155/2010/604615. Epub 2010 Sep 30.

  79. Mathai SC, Bueso M, Hummers LK, Boyce D, Lechtzin N, Le Pavec J, et al. Disproportionate elevation of N-terminal pro-brain natriuretic peptide in scleroderma-related pulmonary hypertension. Eur Respir J. 2010;35(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  80. Lindqvist P, Caidahl K, Neuman-Andersen G, Ozolins C, Rantapaa-Dahlqvist S, Waldenstrom A, et al. Disturbed right ventricular diastolic function in patients with systemic sclerosis: a Doppler tissue imaging study. Chest. 2005;128(2):755–63.

    Article  PubMed  Google Scholar 

  81. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. quiz 86–8

    Article  PubMed  Google Scholar 

  82. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajapreyar, I., Acharya, D. (2020). Pathophysiology of Right Heart Disease in Chronic Lung Disease. In: Bhatt, S. (eds) Cardiac Considerations in Chronic Lung Disease. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-43435-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43435-9_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-43434-2

  • Online ISBN: 978-3-030-43435-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics