Skip to main content

Pathophysiology of Cardiovascular Disease in Chronic Lung Disease

  • Chapter
  • First Online:
Cardiac Considerations in Chronic Lung Disease

Part of the book series: Respiratory Medicine ((RM))

  • 514 Accesses

Abstract

Multiple factors contribute to the complex link between cardiovascular disease (CVD) and chronic lung diseases (CLD). Despite having numerous shared risk factors including smoking and socioeconomic status, there is now growing evidence to suggest potential causality between CLD and CVD rather than simple association. In this chapter, we will review the pathobiologic processes that may drive the development of CVD in patients with CLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. The top 10 causes of death [Internet]. WHO. 2018 [cited 2018 Apr 2]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.

  2. Anthonisen NR, Connett JE, Enright PL, Manfreda J, Lung Health Study Research Group. Hospitalizations and mortality in the Lung Health Study. Am J Respir Crit Care Med. 2002;166(3):333–9.

    Article  PubMed  Google Scholar 

  3. Komajda M, Kerneis M, Tavazzi L, Balanescu S, Cosentino F, Cremonesi A, et al. The chronic ischaemic cardiovascular disease ESC Pilot Registry: results of the six-month follow-up. Eur J Prev Cardiol. 2018;25(4):377–87.

    Article  PubMed  Google Scholar 

  4. Yin L, Lensmar C, Ingelsson E, Bäck M. Differential association of chronic obstructive pulmonary disease with myocardial infarction and ischemic stroke in a nation-wide cohort. Int J Cardiol. 2014;173(3):601–3.

    Article  PubMed  Google Scholar 

  5. Chang CL, Robinson SC, Mills GD, Sullivan GD, Karalus NC, McLachlan JD, et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax. 2011;66(9):764–8.

    Article  PubMed  Google Scholar 

  6. Donaldson GC, Hurst JR, Smith CJ, Hubbard RB, Wedzicha JA. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest. 2010;137(5):1091–7.

    Article  PubMed  Google Scholar 

  7. Portegies MLP, Lahousse L, Joos GF, Hofman A, Koudstaal PJ, Stricker BH, et al. Chronic obstructive pulmonary disease and the risk of stroke. The Rotterdam Study. Am J Respir Crit Care Med. 2016;193(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  8. McAllister DA, Maclay JD, Mills NL, Leitch A, Reid P, Carruthers R, et al. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J. 2012;39(5):1097–103.

    Article  CAS  PubMed  Google Scholar 

  9. Kunisaki KM, Dransfield MT, Anderson JA, Brook RD, Calverley PMA, Celli BR, et al. Exacerbations of chronic obstructive pulmonary disease and cardiac events: a cohort analysis. Am J Respir Crit Care Med. 2018;198(1):51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dalal AA, Shah M, Lunacsek O, Hanania NA. Clinical and economic burden of patients diagnosed with COPD with comorbid cardiovascular disease. Respir Med. 2011;105(10):1516–22.

    Article  PubMed  Google Scholar 

  11. Patel ARC, Donaldson GC, Mackay AJ, Wedzicha JA, Hurst JR. The impact of ischemic heart disease on symptoms, health status, and exacerbations in patients with COPD. Chest. 2012;141(4):851–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sidney S, Sorel M, Quesenberry CP, DeLuise C, Lanes S, Eisner MD. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest. 2005;128(4):2068–75.

    Article  PubMed  Google Scholar 

  13. Lee HM, Le H, Lee BT, Lopez VA, Wong ND. Forced vital capacity paired with Framingham Risk Score for prediction of all-cause mortality. Eur Respir J. 2010;36(5):1002–6.

    Article  CAS  PubMed  Google Scholar 

  14. Iwamoto H, Yokoyama A, Kitahara Y, Ishikawa N, Haruta Y, Yamane K, et al. Airflow limitation in smokers is associated with subclinical atherosclerosis. Am J Respir Crit Care Med. 2009;179(1):35–40.

    Article  PubMed  Google Scholar 

  15. van Gestel YRBM, Flu W-J, van Kuijk J-P, Hoeks SE, Bax JJ, Sin DD, et al. Association of COPD with carotid wall intima-media thickness in vascular surgery patients. Respir Med. 2010;104(5):712–6.

    Article  PubMed  Google Scholar 

  16. Chindhi S, Thakur S, Sarkar M, Negi PC. Subclinical atherosclerotic vascular disease in chronic obstructive pulmonary disease: prospective hospital-based case control study. Lung India. 2015;32(2):137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lahousse L, van den Bouwhuijsen QJA, Loth DW, Joos GF, Hofman A, Witteman JCM, et al. Chronic obstructive pulmonary disease and lipid core carotid artery plaques in the elderly: the Rotterdam Study. Am J Respir Crit Care Med. 2013;187(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  18. Charakida M, Masi S, Lüscher TF, Kastelein JJP, Deanfield JE. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J. 2010;31(23):2854–61.

    Article  PubMed  Google Scholar 

  19. Juonala M, Viikari JSA, Laitinen T, Marniemi J, Helenius H, Rönnemaa T, et al. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: the cardiovascular risk in young Finns study. Circulation. 2004;110(18):2918–23.

    Article  PubMed  Google Scholar 

  20. Thijssen DHJ, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2010;300(1):H2–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Clarenbach CF, Senn O, Sievi NA, Camen G, van Gestel AJR, Rossi VA, et al. Determinants of endothelial function in patients with COPD. Eur Respir J. 2013;42(5):1194–204.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Miguelez P, Seigler N, Bass L, Dillard TA, Harris RA. Assessments of endothelial function and arterial stiffness are reproducible in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:1977–86.

    PubMed  PubMed Central  Google Scholar 

  23. Marchetti N, Ciccolella DE, Jacobs MR, Crookshank A, Gaughan JP, Kashem MA, et al. Hospitalized acute exacerbation of COPD impairs flow and nitroglycerin-mediated peripheral vascular dilation. COPD. 2011;8(2):60–5.

    Article  PubMed  Google Scholar 

  24. Vivodtzev I, Minet C, Tamisier R, Arbib F, Borel J-C, Baguet J-P, et al. Arterial stiffness by pulse wave velocity in COPD: reliability and reproducibility. Eur Respir J. 2013;42(4):1140–2.

    Article  PubMed  Google Scholar 

  25. Fisk M, McEniery CM, Gale N, Mäki-Petäjä K, Forman JR, Munnery M, et al. Surrogate markers of cardiovascular risk and chronic obstructive pulmonary disease: a large case-controlled study. Hypertensions. 2018;71(3):499–506.

    Article  CAS  Google Scholar 

  26. Zureik M, Benetos A, Neukirch C, Courbon D, Bean K, Thomas F, et al. Reduced pulmonary function is associated with central arterial stiffness in men. Am J Respir Crit Care Med. 2001;164(12):2181–5.

    Article  CAS  PubMed  Google Scholar 

  27. McAllister DA, Maclay JD, Mills NL, Mair G, Miller J, Anderson D, et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(12):1208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vivodtzev I, Tamisier R, Baguet JP, Borel JC, Levy P, Pépin JL. Arterial stiffness in COPD. Chest. 2014;145(4):861–75.

    Article  PubMed  Google Scholar 

  29. Maclay JD, McAllister DA, Rabinovich R, Haq I, Maxwell S, Hartland S, et al. Systemic elastin degradation in chronic obstructive pulmonary disease. Thorax. 2012;67(7):606–12.

    Article  PubMed  Google Scholar 

  30. Williams MC, Murchison JT, Edwards LD, Agustí A, Bakke P, Calverley PMA, et al. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax. 2014;69(8):718–23.

    Article  PubMed  Google Scholar 

  31. Dransfield MT, Huang F, Nath H, Singh SP, Bailey WC, Washko GR. CT emphysema predicts thoracic aortic calcification in smokers with and without COPD. COPD. 2010;7(6):404–10.

    Article  PubMed  Google Scholar 

  32. Zagaceta J, Bastarrika G, Zulueta JJ, Colina I, Alcaide AB, Campo A, et al. Prospective comparison of non-invasive risk markers of major cardiovascular events in COPD patients. Respir Res. 2017;18(1):175.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Savale L, Chaouat A, Bastuji-Garin S, Marcos E, Boyer L, Maitre B, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179(7):566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–93.

    Article  CAS  PubMed  Google Scholar 

  35. Amsellem V, Gary-Bobo G, Marcos E, Maitre B, Chaar V, Validire P, et al. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(12):1358–66.

    Article  CAS  PubMed  Google Scholar 

  36. Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt 1):737–44.

    Article  CAS  PubMed  Google Scholar 

  37. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7(1):53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rajendrasozhan S, Yang S-R, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao H, Chung S, Hwang J, Rajendrasozhan S, Sundar IK, Dean DA, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conti V, Corbi G, Manzo V, Pelaia G, Filippelli A, Vatrella A. Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal Cell Pathol (Amst) [Internet]. 2015 [cited 2018 Feb 27]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506835/.

  41. Nyunoya T, Monick MM, Klingelhutz AL, Glaser H, Cagley JR, Brown CO, et al. Cigarette smoke induces cellular senescence via Werner’s syndrome protein down-regulation. Am J Respir Crit Care Med. 2009;179(4):279–87.

    Article  CAS  PubMed  Google Scholar 

  42. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertensions. 2001;37(2 Pt 2):381–5.

    Article  CAS  Google Scholar 

  43. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.

    Article  CAS  PubMed  Google Scholar 

  44. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–4.

    Article  CAS  PubMed  Google Scholar 

  45. Gan WQ, Man SFP, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Rio F, Miravitlles M, Soriano JB, Muñoz L, Duran-Tauleria E, Sánchez G, et al. Systemic inflammation in chronic obstructive pulmonary disease: a population-based study. Respir Res. 2010;11:63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Coulson JM, Rudd JHF, Duckers JM, Rees JIS, Shale DJ, Bolton CE, et al. Excessive aortic inflammation in chronic obstructive pulmonary disease: an 18F-FDG PET pilot study. J Nucl Med. 2010;51(9):1357–60.

    Article  PubMed  Google Scholar 

  48. Miller J, Edwards LD, Agustí A, Bakke P, Calverley PMA, Celli B, et al. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir Med. 2013;107(9):1376–84.

    Article  PubMed  Google Scholar 

  49. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114(12):1867–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  CAS  PubMed  Google Scholar 

  51. Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, et al. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol. 2000;20(9):2094–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  53. Sin DD, Man SFP. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation. 2003;107(11):1514–9.

    Article  PubMed  Google Scholar 

  54. Park HY, Lim SY, Hwang JH, Choi J-H, Koh W-J, Sung J, et al. Lung function, coronary artery calcification, and metabolic syndrome in 4905 Korean males. Respir Med. 2010;104(9):1326–35.

    Article  PubMed  Google Scholar 

  55. Nikolakopoulou S, Hillas G, Perrea D, Tentolouris N, Loukides S, Kostikas K, et al. Serum angiopoietin-2 and CRP levels during COPD exacerbations. COPD. 2014;11(1):46–51.

    Article  PubMed  Google Scholar 

  56. Liu X, Liu Y, Huang X, Lin G, Xie C. Endothelial progenitor cell dysfunction in acute exacerbation of chronic obstructive pulmonary disease. Mol Med Rep. 2017;16(4):5294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266–73.

    Article  CAS  PubMed  Google Scholar 

  58. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  59. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  60. Tanrikulu AC, Abakay A, Evliyaoglu O, Palanci Y. Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease. Biol Trace Elem Res. 2011;143(2):659–67.

    Article  CAS  PubMed  Google Scholar 

  61. Can U, Yerlikaya FH, Yosunkaya S. Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease. J Chin Med Assoc. 2015;78(12):702–8.

    Article  PubMed  Google Scholar 

  62. Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol. 2015;289(3):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shukla RK, Kant S, Bhattacharya S, Mittal B. Association of genetic polymorphism of GSTT1, GSTM1 and GSTM3 in COPD patients in a north Indian population. COPD. 2011;8(3):167–72.

    Article  PubMed  Google Scholar 

  64. Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, Pierce JA. The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis. 1977;116(3):469–75.

    Article  CAS  PubMed  Google Scholar 

  65. Dinerman JL, Mehta JL, Saldeen TG, Emerson S, Wallin R, Davda R, et al. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol. 1990;15(7):1559–63.

    Article  CAS  PubMed  Google Scholar 

  66. Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P. Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation. 2003;107(22):2829–36.

    Article  CAS  PubMed  Google Scholar 

  67. Vandenbroucke RE, Dejonckheere E, Libert C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J. 2011;38(5):1200–14.

    Article  CAS  PubMed  Google Scholar 

  68. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Pusalkar P, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(2):372.

    Article  CAS  PubMed  Google Scholar 

  69. Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006;43(12):897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Golovatch P, Mercer BA, Lemaître V, Wallace A, Foronjy RF, D’Armiento J. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp Lung Res. 2009;35(8):631–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li X, Li Y, Jin J, Jin D, Cui L, Li X, et al. Increased serum cathepsin K in patients with coronary artery disease. Yonsei Med J. 2014;55(4):912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Platt MO, Ankeny RF, Shi G-P, Weiss D, Vega JD, Taylor WR, et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol. 2007;292(3):H1479–86.

    Article  CAS  PubMed  Google Scholar 

  73. Hua Y, Robinson TJ, Cao Y, Shi G-P, Ren J, Nair S. Cathepsin K knockout alleviates aging-induced cardiac dysfunction. Aging Cell. 2015;14(3):345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vlahakos DV, Kosmas EN, Dimopoulou I, Ikonomou E, Jullien G, Vassilakos P, et al. Association between activation of the renin-angiotensin system and secondary erythrocytosis in patients with chronic obstructive pulmonary disease. Am J Med. 1999;106(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  75. Wang J, Chen L, Chen B, Meliton A, Liu SQ, Shi Y, et al. Chronic activation of the renin-angiotensin system induces lung fibrosis. Sci Rep. 2015;5:15561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm. 2014;2014:689360.

    Article  CAS  Google Scholar 

  77. Montecucco F, Pende A, Mach F. The renin-angiotensin system modulates inflammatory processes in atherosclerosis: evidence from basic research and clinical studies. Mediators Inflamm [Internet]. 2009 [cited 2018 Mar 5]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668935/.

  78. da Cunha V, Martin-McNulty B, Vincelette J, Choy DF, Li W-W, Schroeder M, et al. Angiotensin II induces histomorphologic features of unstable plaque in a murine model of accelerated atherosclerosis. J Vasc Surg. 2006;44(2):364–71.

    Article  PubMed  Google Scholar 

  79. Sabit R, Thomas P, Shale DJ, Collins P, Linnane SJ. The effects of hypoxia on markers of coagulation and systemic inflammation in patients with COPD. Chest. 2010;138(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  80. Alessandri C, Basili S, Violi F, Ferroni P, Gazzaniga PP, Cordova C. Hypercoagulability state in patients with chronic obstructive pulmonary disease. Chronic Obstructive Bronchitis and Haemostasis Group. Thromb Haemost. 1994;72(3):343–6.

    Article  CAS  PubMed  Google Scholar 

  81. Ashitani J-I, Mukae H, Arimura Y, Matsukura S. Elevated plasma procoagulant and fibrinolytic markers in patients with chronic obstructive pulmonary disease. Intern Med. 2002;41(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  82. Jatene T, Biering-Sørensen T, Nochioka K, Mangione FM, Hansen KW, Sørensen R, et al. Frequency of cardiac death and stent thrombosis in patients with chronic obstructive pulmonary disease undergoing percutaneous coronary intervention (from the BASKET-PROVE I and II trials). Am J Cardiol. 2017;119(1):14–9.

    Article  PubMed  Google Scholar 

  83. Harrison MT, Short P, Williamson PA, Singanayagam A, Chalmers JD, Schembri S. Thrombocytosis is associated with increased short and long term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax. 2014;69(7):609–15.

    Article  PubMed  Google Scholar 

  84. Klausen T, Olsen NV, Poulsen TD, Richalet JP, Pedersen BK. Hypoxemia increases serum interleukin-6 in humans. Eur J Appl Physiol. 1997;76(5):480–2.

    Article  CAS  Google Scholar 

  85. Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, et al. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood. 2014;123(8):1250–60.

    Article  CAS  PubMed  Google Scholar 

  86. Yamaji-Kegan K, Takimoto E, Zhang A, Weiner NC, Meuchel LW, Berger AE, et al. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;306(12):L1090–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fan L, Feng Y, Wan HY, Ni L, Qian YR, Guo Y, et al. Hypoxia induces dysregulation of local renin-angiotensin system in mouse Lewis lung carcinoma cells. Genet Mol Res. 2014;13(4):10562–73.

    Article  CAS  PubMed  Google Scholar 

  88. Koechlin C, Maltais F, Saey D, Michaud A, LeBlanc P, Hayot M, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005;60(10):834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heindl S, Lehnert M, Criée CP, Hasenfuss G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164(4):597–601.

    Article  CAS  PubMed  Google Scholar 

  90. Thomson AJ, Drummond GB, Waring WS, Webb DJ, Maxwell SRJ. Effects of short-term isocapnic hyperoxia and hypoxia on cardiovascular function. J Appl Physiol. 2006;101(3):809–16.

    Article  CAS  PubMed  Google Scholar 

  91. Morgan BJ, Crabtree DC, Palta M, Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol. 1995;79(1):205–13.

    Article  CAS  PubMed  Google Scholar 

  92. Hanrahan JP, Grogan DR, Baumgartner RA, Wilson A, Cheng H, Zimetbaum PJ, et al. Arrhythmias in patients with chronic obstructive pulmonary disease (COPD): occurrence frequency and the effect of treatment with the inhaled long-acting beta2-agonists arformoterol and salmeterol. Medicine (Baltimore). 2008;87(6):319–28.

    Article  CAS  Google Scholar 

  93. Perret-Guillaume C, Joly L, Benetos A. Heart rate as a risk factor for cardiovascular disease. Prog Cardiovasc Dis. 2009;52(1):6–10.

    Article  PubMed  Google Scholar 

  94. Wang X, Jiang Z, Chen B, Zhou L, Kong Z, Zuo S, et al. Cardiac autonomic function in patients with acute exacerbation of chronic obstructive pulmonary disease with and without ventricular tachycardia. BMC Pulm Med. 2016;16(1):124.

    Article  PubMed  PubMed Central  Google Scholar 

  95. de Miguel DJ, Morgan JC, García RJ. The association between COPD and heart failure risk: a review. Int J Chron Obstruct Pulmon Dis. 2013;8:305–12.

    Google Scholar 

  96. Canepa M, Straburzynska-Migaj E, Drozdz J, Fernandez-Vivancos C, Pinilla JMG, Nyolczas N, et al. Characteristics, treatments and 1-year prognosis of hospitalized and ambulatory heart failure patients with chronic obstructive pulmonary disease in the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail. 2018;20(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  97. López-Sánchez M, Muñoz-Esquerre M, Huertas D, Gonzalez-Costello J, Ribas J, Manresa F, et al. High prevalence of left ventricle diastolic dysfunction in severe COPD associated with a low exercise capacity: a cross-sectional study. PLoS One. 2013;8(6):e68034.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Jörgensen K, Müller MF, Nel J, Upton RN, Houltz E, Ricksten S-E. Reduced intrathoracic blood volume and left and right ventricular dimensions in patients with severe emphysema: an MRI study. Chest. 2007;131(4):1050–7.

    Article  PubMed  Google Scholar 

  99. Watz H, Waschki B, Meyer T, Kretschmar G, Kirsten A, Claussen M, et al. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest. 2010;138(1):32–8.

    Article  PubMed  Google Scholar 

  100. Alter P, Watz H, Kahnert K, Pfeifer M, Randerath WJ, Andreas S, et al. Airway obstruction and lung hyperinflation in COPD are linked to an impaired left ventricular diastolic filling. Respir Med. 2018;137:14–22.

    Article  PubMed  Google Scholar 

  101. Hohlfeld JM, Vogel-Claussen J, Biller H, Berliner D, Berschneider K, Tillmann H-C, et al. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): a double-blind, randomised, crossover, placebo-controlled, single-centre trial. Lancet Respir Med. 2018;6(5):368–78.

    Article  CAS  PubMed  Google Scholar 

  102. Stone IS, Barnes NC, James W-Y, Midwinter D, Boubertakh R, Follows R, et al. Lung deflation and cardiovascular structure and function in chronic obstructive pulmonary disease. A randomized controlled trial. Am J Respir Crit Care Med. 2016;193(7):717–26.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Come CE, Divo MJ, San José Estépar R, Sciurba FC, Criner GJ, Marchetti N, et al. Lung deflation and oxygen pulse in COPD: results from the NETT randomized trial. Respir Med. 2012;106(1):109–19.

    Article  PubMed  Google Scholar 

  104. Wells JM, Dransfield MT. Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD. Int J Chron Obstruct Pulmon Dis. 2013;8:509–21.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pecci R, De La Fuente Aguado J, Sanjurjo Rivo AB, Sanchez Conde P, Corbacho Abelaira M. Peripheral arterial disease in patients with chronic obstructive pulmonary disease. Int Angiol. 2012;31(5):444–53.

    CAS  PubMed  Google Scholar 

  106. Dalleywater W, Powell HA, Hubbard RB, Navaratnam V. Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: a population-based study. Chest. 2015;147(1):150–6.

    Article  PubMed  Google Scholar 

  107. Kim W-Y, Mok Y, Kim GW, Baek S-J, Yun YD, Jee SH, et al. Association between idiopathic pulmonary fibrosis and coronary artery disease: a case-control study and cohort analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2015;31(4):289–96.

    PubMed  Google Scholar 

  108. Nathan SD, Basavaraj A, Reichner C, Shlobin OA, Ahmad S, Kiernan J, et al. Prevalence and impact of coronary artery disease in idiopathic pulmonary fibrosis. Respir Med. 2010;104(7):1035–41.

    Article  PubMed  Google Scholar 

  109. Tattersall MC, Guo M, Korcarz CE, Gepner AD, Kaufman JD, Liu KJ, et al. Asthma predicts cardiovascular disease events: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(6):1520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Dransfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parekh, T.M., Dransfield, M.T. (2020). Pathophysiology of Cardiovascular Disease in Chronic Lung Disease. In: Bhatt, S. (eds) Cardiac Considerations in Chronic Lung Disease. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-43435-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43435-9_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-43434-2

  • Online ISBN: 978-3-030-43435-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics