Skip to main content

Analysis of Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence

  • Conference paper
  • First Online:
Topological Data Analysis

Part of the book series: Abel Symposia ((ABEL,volume 15))

Abstract

We overview recent work on obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), one first constructs a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, it is possible to then obtain a persistence diagram or barcode from this zigzag persistence module. It turns out that these barcodes are stable under perturbations of the input DG under a certain suitable distance between DGs. We also overview how these results are also applicable in the setting of dynamic metric spaces, and describe a computational application to the analysis of flocking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A formicarium is an enclosure for keeping ants under semi-natural conditions [40].

  2. 2.

    To say that A ⊂R is locally finite means that for any bounded interval I ⊂R, the cardinality of I ∩ A is finite.

  3. 3.

    The name formigram is a combination of the words formicarium and diagram.

  4. 4.

    If θ X is not continuous at c, then at least one of the relations of θ X(c − ε) ≤ θ X(c) ≥ θ X(c + ε) would be strict for small ε > 0. But if c is a continuity point of θ X, then θ X(c − ε) = θ X(c) = θ X(c + ε) for small ε > 0.

References

  1. https://www.red3d.com/cwr/boids/.

  2. http://www.mrzv.org/software/dionysus/.

  3. U. Bauer, C. Landi, and F. Memoli. The reeb graph edit distance is universal. arXiv preprint arXiv:1801.01866, 2018.

    Google Scholar 

  4. M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns. Computational Geometry, 41(3):111–125, 2008.

    Article  MathSciNet  Google Scholar 

  5. H. B. Bjerkevik. Stability of higher-dimensional interval decomposable persistence modules. arXiv preprint arXiv:1609.02086, 2016.

    Google Scholar 

  6. H. B. Bjerkevik and M. B. Botnan. Computational complexity of the interleaving distance. In Proceedings of the thirty-fourth annual symposium on Computational geometry, 2018.

    Google Scholar 

  7. M. B. Botnan and M. Lesnick. Algebraic stability of persistence modules. arXiv preprint arXiv:1604.00655, 2016.

    Google Scholar 

  8. P. Bubenik and J. A. Scott. Categorification of persistent homology. Discrete & Computational Geometry, 51(3):600–627, 2014.

    Article  MathSciNet  Google Scholar 

  9. G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics, 10(4):367–405, 2010.

    Article  MathSciNet  Google Scholar 

  10. G. Carlsson, V. De Silva, and D. Morozov. Zigzag persistent homology and real-valued functions. In Proceedings of the twenty-fifth annual symposium on Computational geometry, pages 247–256. ACM, 2009.

    Google Scholar 

  11. G. Carlsson and F. Mémoli. Characterization, stability and convergence of hierarchical clustering methods. Journal of Machine Learning Research, 11:1425–1470, 2010.

    MathSciNet  MATH  Google Scholar 

  12. G. Carlsson and F. Mémoli. Classifying clustering schemes. Foundations of Computational Mathematics, 13(2):221–252, 2013.

    Article  MathSciNet  Google Scholar 

  13. F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Oudot. Proximity of persistence modules and their diagrams. In Proc. 25th ACM Sympos. on Comput. Geom., pages 237–246, 2009.

    Google Scholar 

  14. F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and S. Y. Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. In Proc. of SGP, 2009.

    Google Scholar 

  15. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

    Article  MathSciNet  Google Scholar 

  16. N. Clause, and W. Kim. Spatiotemporal Persistent Homology computation tool. https://github.com/ndag/PHoDMSs, 2020.

  17. V. De Silva, E. Munch, and A. Patel. Categorified reeb graphs. Discrete & Computational Geometry, 55(4):854–906, 2016.

    Article  MathSciNet  Google Scholar 

  18. H. Edelsbrunner and J. Harer. Computational Topology - an Introduction. American Mathematical Society, 2010.

    MATH  Google Scholar 

  19. J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, pages 35–42. ACM, 2006.

    Google Scholar 

  20. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of patterns in 2d trajectories of moving points. Geoinformatica, 11(2):195–215, 2007.

    Article  Google Scholar 

  21. Y. Huang, C. Chen, and P. Dong. Modeling herds and their evolvements from trajectory data. In International Conference on Geographic Information Science, pages 90–105. Springer, 2008.

    Google Scholar 

  22. S.-Y. Hwang, Y.-H. Liu, J.-K. Chiu, and E.-P. Lim. Mining mobile group patterns: A trajectory-based approach. In PAKDD, volume 3518, pages 713–718. Springer, 2005.

    Google Scholar 

  23. N. Jardine and R. Sibson. Mathematical taxonomy. John Wiley & Sons Ltd., London, 1971. Wiley Series in Probability and Mathematical Statistics.

    Google Scholar 

  24. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 1(1):1068–1080, 2008.

    Article  Google Scholar 

  25. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In SSTD, volume 3633, pages 364–381. Springer, 2005.

    Google Scholar 

  26. W. Kim and F. Memoli. Stable signatures for dynamic graphs and dynamic metric spaces via zigzag persistence. arXiv preprint arXiv:1712.04064, 2017.

    Google Scholar 

  27. W. Kim and F. Mémoli. Formigrams: Clustering summaries of dynamic data. In Proceedings of 30th Canadian Conference on Computational Geometry (CCCG18), 2018.

    Google Scholar 

  28. W. Kim, and F. Mémoli. Spatiotemporal persistent homology for dynamic metric spaces. Discrete & Computational Geometry. https://doi.org/10.1007/s00454-019-00168-w, 2020.

  29. W. Kim, F. Mémoli, and Z. Smith. https://research.math.osu.edu/networks/formigrams, 2017.

  30. W. Kim, F. Mémoli, and D. Verano. Formigramator: Formigram computation tool, https://research.math.osu.edu/networks/formigramator, 2020.

  31. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. Proceedings of the VLDB Endowment, 3(1–2):723–734, 2010.

    Article  Google Scholar 

  32. F. Mémoli. A distance between filtered spaces via tripods. arXiv preprint arXiv:1704.03965, 2017.

    Google Scholar 

  33. N. Milosavljević, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multiplication time. In Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG ’11, pages 216–225, New York, NY, USA, 2011. ACM.

    Google Scholar 

  34. J. K. Parrish and W. M. Hamner. Animal groups in three dimensions: how species aggregate. Cambridge University Press, 1997.

    Book  Google Scholar 

  35. C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH computer graphics, volume 21, pages 25–34. ACM, 1987.

    Google Scholar 

  36. Z. Smith, S. Chowdhury, and F. Mémoli. Hierarchical representations of network data with optimal distortion bounds. In Signals, Systems and Computers, 2016 50th Asilomar Conference on, pages 1834–1838. IEEE, 2016.

    Google Scholar 

  37. D. J. Sumpter. Collective animal behavior. Princeton University Press, 2010.

    Book  Google Scholar 

  38. M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in spatio-temporal data. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pages 286–295. ACM, 2009.

    Google Scholar 

  39. Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient algorithms for mining maximal valid groups. The VLDB Journal – The International Journal on Very Large Data Bases, 17(3):515–535, 2008.

    Article  Google Scholar 

  40. Wikipedia. Formicarium — Wikipedia, the free encyclopedia, 2017. [Online; accessed 03-June-2017].

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from these sources: NSF-RI-1422400, NSF AF 1526513, NSF DMS 1723003, NSF CCF 1740761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Mémoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, W., Mémoli, F., Smith, Z. (2020). Analysis of Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence. In: Baas, N., Carlsson, G., Quick, G., Szymik, M., Thaule, M. (eds) Topological Data Analysis. Abel Symposia, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-43408-3_14

Download citation

Publish with us

Policies and ethics