Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 946 Accesses

Abstract

The search for engineering materials that can withstand the high demands of the emerging technologies in the fields of bio-engineering, aerospace engineering, medicine, environmental protection, renewable energy and manufacturing industries continues to thrive and find relevance in the today’s world. Metal oxides-based electrodes possess exceptional properties which qualify them as suitable engineering materials with wide range of applications such as sensors, semiconductors, energy storage, lithium-ion batteries and solar cells. This paper focuses on the use of various metal oxide-based electrodes (metal oxide, transition metal oxide, mixed metal oxide, transition, and hybrid systems) and how they have improved certain parameters of energy storage such as life cycle, capacitance, nominal voltage in above mentioned application prospects. This paper describes the novel concept of lithium metal oxide electrode materials which are of value to researchers in developing high-energy and enhanced-cyclability electrochemical capacitors comparable to Li-ion batteries. In order to fully achieve the potential of metal oxide electrodes in the future, significant efforts need to be directed to producing low cost and environment-friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Arora, V.S. Jaswal, K. Singh, R. Singh, Applications of metal/mixed metal oxides as photocatalyst: a review. Orient. J. Chem. 32(4), 2035–2042 (2016)

    Article  CAS  Google Scholar 

  2. A.I. Ayesh. Metal/metal-oxide nanoclusters for gas sensor applications. J. Nanomater. (2016). https://doi.org/10.1155/2016/2359019

  3. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 84 (2018)

    Article  CAS  Google Scholar 

  4. E. O’Sullivan, E.J. Calvo, Reactions at metal oxide electrodes, in Comprehensive Chemical Kinetics, and Undefined 1988 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  5. R. White, J. Bockris, B. Conway, E. Yeager, Comprehensive Treatise of Electrochemistry. Vol. 8: Experimental Methods in Electrochemistry (1984)

    Google Scholar 

  6. P. Sun, Z. Deng, P. Yang, X. Yu, Y. Chen, Z. Liang, H. Meng, W. Xie, S. Tan, W. Mai,.“Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors. J. Mater. Chem. A, 3, 12076 (2015). pubs.rsc.org

    Google Scholar 

  7. S. Elhag, Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion (2017)

    Google Scholar 

  8. F. Blais, Review of 20 years of range sensor development. J. Electron. Imaging (2004), spiedigitallibrary.org

    Google Scholar 

  9. P.S. Waggoner, H.G. Craighead, Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab. Chip. 7(10), 1238–1255 (2007)

    Article  CAS  Google Scholar 

  10. D. Grieshaber, R. Mackenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Kunststoffe Int. 8(3), 1400–1458 (2008)

    CAS  Google Scholar 

  11. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  CAS  Google Scholar 

  12. Y. Wang, H. Xu, J. Zhang, G. Li, Electrochemical sensors for clinic analysis. Sensors 8(4), 2043–2081 (2008)

    Article  CAS  Google Scholar 

  13. M.A. Morikawa, N. Kimizuka, M. Yoshihara, T. Endo, New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3-n(phen)n]n + complexes triggered by electron transfer from glucose oxidase. Chem.—A Eur. J. 8(24), 5580–5584 (2002)

    Article  CAS  Google Scholar 

  14. Y. Miwa, M. Nishizawa, T. Matsue, I. Uchida, A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull. Chem. Soc. Japan 67(10), 2864–2866 (1994)

    Article  CAS  Google Scholar 

  15. S. Mansouri, J.S. Schultz, A miniature optical glucose sensor based on affinity binding. Nat. Biotechnol. 2(10), 885–890 (1984)

    Article  CAS  Google Scholar 

  16. N.D. Evans, D.J.S. Birch, O.J. Rolinski, J.C. Pickup, F. Hussain, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20(12), 2555–2565 (2004)

    Google Scholar 

  17. Y.-B. Hahn, R. Ahmad, N. Tripathy, Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 48, 10369–10385 (2012)

    Article  CAS  Google Scholar 

  18. M.M. Rahman, A.J.S. Ahammad, J. Jin, S.J. Ahn, J.-J. Lee, A Comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010). https://doi.org/10.3390/s100504855

    Article  CAS  Google Scholar 

  19. C. Espro, N. Donato, S. Galvagno, D. Alosiso, Salvatore G. Leonardi, G. Neri, CuO nanowires-based electrodes for glucose sensors. Chem. Eng. Transact. 41, 415–420 (2014)

    Google Scholar 

  20. C. Kong, L. Tang, X. Zhang, S. Sun, S. Yang, X. Song, Z. Yang, Templating synthesis of hollow CuO polyhedron and its application for one enzymatic glucose detection. J. Mater. Chem. A (2014). https://doi.org/10.1039/c4ta00703d

    Article  Google Scholar 

  21. M.-J. Song, S.-K. Lee, J.-H. Kim, D.-S. Lim, Non-enzymatic glucose sensor based on Cu electrode modified with CuO nanoflowers. J. Electrochem. Soc. 160, B43–B46 (2013)

    Article  CAS  Google Scholar 

  22. N.M. Ahmad, J. Abdullah, N.I. Ramli, S. Abd Rahman, N.E. Azmi, Z. Hamzah, A. Saat, N.H. Rahman, Characterization of ZrO2/PEG composite film as immobilization matrix for glucose oxidase. World Academy of Science. Eng. Technol. Int. J. Mater. Metall. Eng. 7, 8 (2013)

    Google Scholar 

  23. A.T.E. Viliana, S.-M. Chena, M.A. Ali, F.M.A. Al-Hemaid, Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles decorated reduced graphene oxide sheets for a glucose biosensor. RSC Adv. 4, 30358–30367 (2014)

    Article  CAS  Google Scholar 

  24. B. Wang, S. Li, J. Liu, M. Yu, Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 49, 521–524 (2014)

    Article  CAS  Google Scholar 

  25. Z. Yang, Y. Xu, J. Li, Z. Jian, S. Yu, Y. Zhang, X. Hu, D.D. Dionysiou, An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods. Microchim. Acta 182(9–10), 1841–1848 (2015)

    Article  CAS  Google Scholar 

  26. N. Haghighi, R. Hallaj, A. Salimi, Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. Mater. Sci. Eng., C 73, 417–424 (2017)

    Article  CAS  Google Scholar 

  27. S. Saha, S.K. Arya, S.P. Singh, B.D. Malhotra, K. Sreenivas, V. Gupta, Cerium oxide (CeO2) thin film for mediator-less glucose biosensors, in Materials Research Society Symposium Proceedings (2009)

    Google Scholar 

  28. D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, D. Kim, Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectr. 31(1), 176–181 (2012)

    Google Scholar 

  29. A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24(4), 676–683 (2008)

    Article  CAS  Google Scholar 

  30. Ç. Atan, E. Karaku, Novel zinc oxide nanorod and chitosan-based electrochemical glucose biosensors for glucose assay in human serum samples. Sens. Lett. 12(11), 1613–1619 (2014)

    Article  Google Scholar 

  31. Q. Ma, K. Nakazato, Low-temperature fabrication of ZnO nanorods/ferrocenyl–alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosens. Bioelectr. 51, 362–365 (2014)

    Google Scholar 

  32. M.I. Said, H. Azza, R. Fatma, A.M. Abdel-aal, Fabrication of novel electrochemical sensors based on modification with different polymorphs of MnO2 nanoparticles. RSC Adv. 8, 18698–18713 (2018)

    Article  CAS  Google Scholar 

  33. E.O. Fayemi, A.S. Adekunle, E.E. Ebenso, Metal oxide nanoparticles/multi-walled carbon nanotube nanocomposite modified electrode for the detection of dopamine: comparative electrochemical study. J. Biosens. Bioelectr. 6, 190 (2015). https://doi.org/10.4172/2155-6210.1000190

    Article  CAS  Google Scholar 

  34. M.J. Devine, H. Plun-Favreau, N.W. Wood, Parkinson’s disease and cancer: two wars, one front. Nat. Rev. Cancer 11(11), 812–823 (2011)

    Article  CAS  Google Scholar 

  35. S. Shahrokhian, E. Asadian, Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J. Electroanal. Chem. 636(1–2), 40–46 (2009)

    Article  CAS  Google Scholar 

  36. H. Beitollahi, F. Garkani, Graphene oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode (2016), pp. 1–9

    Google Scholar 

  37. L. P. Martin, R. S. Glass, Hydrogen Sensor Based on YSZ Electrolyte and Tin-Doped Indium Oxide Electrode (2015), pp. 43–47

    Google Scholar 

  38. G. Lu, N. Miura, N. Yamazoe, High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens. Actuators B: Chem. 36, 130–135 (1996)

    Google Scholar 

  39. S. Ayu, M. Breedon, N. Miura, Sensing characteristics of aged zirconia-based hydrogen sensor utilizing Zn–Ta-based oxide sensing-electrode. Electrochem. Commun. 31, 133–136 (2013)

    Google Scholar 

  40. J. Yi, H. Zhang, Z. Zhang, D. Chen, Hierarchical porous hollow SnO2 nanofiber sensing electrode for high performance potentiometric H2 sensor. Sens. Actuators B Chem. 268, 456–464 (2018)

    Article  CAS  Google Scholar 

  41. Y. Li, X. Li, Z. Tang, J. Wang, J. Yu, Z. Tang, Potentiometric hydrogen sensors based on yttria-stabilized zirconia electrolyte (YSZ) and CdWO4 interface. Sens. Actuators B. Chem. 223, 365–371 (2016)

    Article  CAS  Google Scholar 

  42. S.A. Anggraini, M. Breedon, N. Miura, Effect of sintering temperature on hydrogen sensing characteristics of zirconia sensor utilizing Zn–Ta–O-based sensing electrode. J. Electrochem. Soc. 160(9), B164–B169 (2013)

    Article  CAS  Google Scholar 

  43. J. Yu, J. Yang, Z. Tang, Z. Tang, J. Wang, X. Li, Mixed potential hydrogen sensor using ZnWO4 sensing electrode. Sens. Actuators B Chem. 195, 520–525 (2014)

    Article  CAS  Google Scholar 

  44. H. Zhang, J. Yi, X. Jiang, Fast response, highly sensitive and selective mixed-potential H2 sensor based on (La, Sr)(Cr, Fe)O3-δ perovskite sensing electrode. ACS Appl. Mater. Interfaces. 3–10 (2017)

    Google Scholar 

  45. Y. Li, X. Li, Z. Tang, Z. Tang, J. Yu, J. Wang, Hydrogen sensing of the mixed-potential-type MnWO4/YSZ/Pt sensor. Sens. Actuators, B Chem. 206, 176–180 (2015)

    Article  CAS  Google Scholar 

  46. N. Miura, T. Sato, S.A. Anggraini, A review of mixed-potential type zirconia-based gas sensors. Ionics 20, 901–925 (2014)

    Google Scholar 

  47. J.W. Yoon, M.L. Grilli, E. Di Bartolomeo, R. Polini, E. Traversa, The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens. Actuators B: Chem. 76(2), 483–488 (2001)

    Google Scholar 

  48. W. Xiong, G.M. Kale, Electrochemical NO2 sensor using a NiFe1.9Al0.1O4 oxide spinel electrode. Anal. Chem. 79(10), 3561–3567 (2007)

    Article  CAS  Google Scholar 

  49. N. Miura, J. Wang, M. Nakatou, P. Elumalai, S. Zhuiykov, M. Hasei, High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode. Sens. Actuators B Chem. 114(2), 903–909 (2006)

    Article  CAS  Google Scholar 

  50. A. Morata, J.P. Viricelle, A. Taranc, Development and characterisation of a screen-printed mixed potential gas sensor. Sens. Actuators B: Chem. 130, 561–566 (2008)

    Google Scholar 

  51. Y. Fujio, V.V. Plashnitsa, M. Breedon, N. Miura, Construction of sensitive and selective zirconia-based CO sensors using ZnCr2O4-based sensing electrodes. Langmuir 28(2), 1638–1645 (2012)

    Article  CAS  Google Scholar 

  52. B. Sljuki, C.E. Banks, A. Crossley, R.G. Compton, Lead (IV) oxide—graphite composite electrodes: application to sensing of ammonia, nitrite and phenols. Analytica Chimica Acta 587, 240–246 (2007)

    Google Scholar 

  53. K. Singh, A.A. Ibrahim, A. Umar, A. Kumar, G.R. Chaudhary, S. Singh, S.K. Mehta, Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sens. Actuators B Chem. 202, 1044–1050 (2014)

    Google Scholar 

  54. Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun. 11(7), 1365–1368 (2009)

    Article  CAS  Google Scholar 

  55. N. Lezi, A. Economou, J. Barek, M. Prodromidis, Screen-printed disposable sensors modified with bismuth precursors for rapid voltammetric determination of 3 ecotoxic nitrophenols. Electroanalysis 26, 766–775 (2014)

    Google Scholar 

  56. M.M. Rahman, S.B. Khan, A.M. Asiri, A.G. Al-Sehemi, Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim. Acta 112, 422–430 (2013)

    Article  CAS  Google Scholar 

  57. J. Wu, Q. Wang, A. Umar, S. Sun, L. Huang, J. Wang, Y. Gao, Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes. New J. Chem. 38(9), 4420–4426 (2014)

    Article  CAS  Google Scholar 

  58. M.M. Rahman, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, S.B. Khan, A.M. Asiri, Chemo-sensors development based on low-dimensional codoped Mn2O3–ZnO nanoparticles using flat-silver electrodes. Chem. Cent. J. 7(1), 60 (2013)

    Article  CAS  Google Scholar 

  59. M. Abaker G.N. Dar, A.A. Umar, S.A. Zaidi, A.A. Ibrahim, S. Baskoutas, A. Al-Hajry, CuO nanocubes based highly-sensitive 4-nitrophenol chemical sensor. Sci. Adv. Mater. 4(8), 893–900 (2012)

    Google Scholar 

  60. Y. Haldorai, K. Giribabu, S. Hwang, C.H. Kwak, Y.S. Huh, Y.-K. Han, Facile synthesis of α-MnO2 nanorod/graphene nanocomposite paper electrodes using a 3D precursor for supercapacitors and sensing platform to detect 4-nitrophenol. Electrochim. Acta 222, 717–727 (2016)

    Article  CAS  Google Scholar 

  61. T. Kooyers, W. Westerhof, Toxicology and health risks of hydroquinone in skin lightening formulations. J. Eur. Acad. Dermatol. Venereol. (2005)

    Google Scholar 

  62. M.U.A. Prathap, B. Satpati, R. Srivastava, Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens. Actuators B Chem. 186, 67–77 (2013)

    Article  CAS  Google Scholar 

  63. T. Gan, J. Sun, K. Huang, L. Song, Y. Li, A graphene oxide–mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sens. Actuators B Chem. 177, 412–418 (2013)

    Article  CAS  Google Scholar 

  64. A. Umar, A. Al-Hajry, R. Ahmad, S.G. Ansari, M.S. Al-Assiri, H. Algarni, Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods. Dalt. Trans. 44(48), 21081–21087 (2015)

    Article  CAS  Google Scholar 

  65. S. Ameen, M.S. Akhtar, H. Shik, Highly dense ZnO nanowhiskers for the low level detection of p-hydroquinone. Mater. Lett. 1–5 (2015)

    Google Scholar 

  66. B. Unnikrishnan, P. Ru, S. Chen, Electrochemically synthesized Pt–MnO2 composite particles for simultaneous determination of catechol and hydroquinone. Sens. Actuators B. Chem. 169, 235–242 (2012)

    Article  CAS  Google Scholar 

  67. L. Yang, H. Zhao, S. Fan, B. Li, C. Li, A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC. Anal. Chim. Acta 852, 28–36 (2014)

    Article  CAS  Google Scholar 

  68. S. Erogul, S.Z. Bas, M. Ozmen, S. Yildiz, A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim. Acta 186, 302–313 (2015)

    Article  CAS  Google Scholar 

  69. S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustain. Energy Fuels 1, 145–153 (2017)

    Article  CAS  Google Scholar 

  70. M. Kitano, K. Tsujimaru, M. Anpo, Hydrogen production using highly active titanium oxide-based photocatalysts. Top. Catal. 49(1–2), 4–17 (2008)

    Article  CAS  Google Scholar 

  71. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  72. Y. Wang, C. Sun, X. Zhao, B. Cui, Z. Zeng, A. Wang, G. Liu, H. Cui, The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res. Lett. 11(1), 529 (2016)

    Article  Google Scholar 

  73. H.N. Guan, D.F. Chi, J. Yu, X.C. Li, A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. P-B. Physiol. 92(2), 83–91 (2008)

    Google Scholar 

  74. D.C. Lim, J.H. Jeong, K. Hong, S. Nho, J.-Y. Lee, Q.V. Hoang, S.K. Lee, K. Pyo, D. Lee, S. Cho, Semi-transparent plastic solar cell based on oxide-metal-oxide multilayer electrodes. Prog. Photovoltaics Res. Appl. 26(3), 188–195 (2018)

    Article  CAS  Google Scholar 

  75. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1), 72–88 (2013)

    Article  CAS  Google Scholar 

  76. V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl. Surf. Sci. 255(7), 4192–4196 (2009)

    Article  CAS  Google Scholar 

  77. D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, A. Yu, MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J. Power Sources 199, 409–412 (2012)

    Article  CAS  Google Scholar 

  78. U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 255(5, part 2), 2603–2607 (2008)

    Google Scholar 

  79. X.C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4), 3206–3213 (2012)

    Article  CAS  Google Scholar 

  80. J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, C. Shao, Y. Liu, Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. J. Colloid Interface Sci. 356(2), 706–712 (2011)

    Article  CAS  Google Scholar 

  81. X. Zhang, W. Shi, J. Zhu, D.J. Kharistal, W. Zhao, B.S. Lalia, H.H. Hng, Q. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 5(3), 2013–2019 (2011)

    Article  CAS  Google Scholar 

  82. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater. Chem. 22(36), 19161 (2012)

    Article  CAS  Google Scholar 

  83. X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2(10), 4364 (2012)

    Article  CAS  Google Scholar 

  84. X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z.L. Wang, WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24(7), 938–944 (2012)

    Article  CAS  Google Scholar 

  85. X. Liu, N. Zhang, J. Ni, L. Gao, Improved electrochemical performance of sol-gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor. J. Solid State Electrochem. 17(7), 1939–1944 (2013)

    Article  CAS  Google Scholar 

  86. P. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors. ACS Nano 4(8), 4403–4411 (2010)

    Article  CAS  Google Scholar 

  87. L.J. Hannah, Climate Change Biology (Academic Press, Cambridge, 2010). https://doi.org/10.1016/C2013-0-12835. ISBN 978-0-12-420218-4

  88. J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, L.I. Cekic, M. Winter, Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J. Power Sources 359, 458–467 (2017)

    Article  CAS  Google Scholar 

  89. J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion. E. & E. Sci. 11(4), 772–799 (2018)

    CAS  Google Scholar 

  90. D. Cericola, P. Ruch, R. Kötz, P. Novák, A. Wokaun, Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications. J. Power Sources 195(9), 2731–2736 (2010)

    Article  CAS  Google Scholar 

  91. M. Stoller, R. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. E. & E. Sci. 3(9), 1294 (2010)

    Google Scholar 

  92. H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)

    Article  CAS  Google Scholar 

  93. S.P.S. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt, A.F. Hollenkamp, Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2 (2014)

    Google Scholar 

  94. A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5(19), 1402115 (2015)

    Article  CAS  Google Scholar 

  95. H. Zhang, H. Zhao, M. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A, 6(42), 20564–20620 (2018)

    Google Scholar 

  96. Z. Wang, L. Zhou, X.W. David Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24(14), 1903–1911 (2012)

    Google Scholar 

  97. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)

    Article  CAS  Google Scholar 

  98. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)

    Article  CAS  Google Scholar 

  99. M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–96 (2016)

    Google Scholar 

  100. B. Li, X. Shao, Y. Hao, Y. Zhao, Ultrasonic-spray-assisted synthesis of metal oxide hollow/mesoporous microspheres for catalytic CO oxidation. RSC Adv. 5(104), 85640–85645 (2015)

    Article  CAS  Google Scholar 

  101. F. Cheng, J. Chen, Transition metal vanadium oxides and vanadate materials for lithium batteries. J. Mater. Chem. 21(27), 9841 (2011)

    Article  CAS  Google Scholar 

  102. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, et al., Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10), 5008–5048 (2014)

    Google Scholar 

  103. S. Yan, K. Abhilash, L. Tang, M. Yang, Y. Ma, Q. Xia, Q. Guo, H. Xia, Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 1804371 (2018)

    Google Scholar 

  104. C.M. Julien, A. Mauger, Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 7(11), 396 (2017)

    Article  CAS  Google Scholar 

  105. B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)

    Google Scholar 

  106. P. Polzot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batterles. Nat. Publ. Gr. 407(6803), 496–499 (2000)

    Google Scholar 

  107. J. Chen, L. Archer, X.L. Wen (David), SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. M. Chem. 21(27), 9912 (2011)

    Google Scholar 

  108. Y. Li, J. Shi, Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26(20), 3176–3205 (2014)

    Article  CAS  Google Scholar 

  109. B. Zhao, L.C. Lee, L. Yang, A.J. Pearson, H. Lu, X.J. She, L. Cui, K.H.L. Zhang, R.L.Z. Hoye, A. Karani, P. Xu, A. Sadhanala, N.C. Greenham, R.H. Friend, J.L. MacManus-Driscoll, D. Di, In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 10(49), 41849–41854 (2018)

    Article  CAS  Google Scholar 

  110. W. Chen, Y. Qiu, Y. Zhong, K.S. Wong, S. Yang, High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods. J. Phys. Chem. A 114(9), 3127–3138 (2010)

    Article  CAS  Google Scholar 

  111. W. Chen, Y. Qiua, S. Yang, A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem. Chem. Phys. 12, 9494–9501 (2010)

    Article  CAS  Google Scholar 

  112. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(25), L638–L640 (2006)

    Google Scholar 

  113. T. Hu, T. Becker, N. Pourdavoud, J. Zhao, K.O. Brinkmann, R. Heiderhoff, T. Gahlmann, Z. Huang, S. Olthof, K. Meerholz, D. Többens, B. Cheng, Y. Chen, T. Riedl, Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv. Mater. 29(27), 1606656 (2017)

    Article  CAS  Google Scholar 

  114. X. Zhang, C. Hägglund, M.B. Johansson, K. Sveinbjörnsson, E.M.J. Johansson, Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 26(12), 1921–1929 (2016)

    Article  CAS  Google Scholar 

  115. K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 24(12), 1671–1678 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feyisayo V. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chukwuneke, C., Madu, J.O., Adams, F.V., Johnson, O.T. (2020). Application of Metal Oxides Electrodes. In: Ama, O., Ray, S. (eds) Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43346-8_8

Download citation

Publish with us

Policies and ethics