Skip to main content

Synthesis and Fabrication of Photoactive Nanocomposites Electrodes for the Degradation of Wastewater Pollutants

  • Chapter
  • First Online:
Nanostructured Metal-Oxide Electrode Materials for Water Purification

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 795 Accesses

Abstract

On the endeavor of wastewater treatment, synthesis and fabrication of various nanoparticle metal oxides is the pillar of continuation. As metal oxides possess different pros and cons, they are presently applied in their singular compounds and combined forms so as to pin point their definitive distinction on the efficiency and effectiveness occur on wastewater degradation. Hence, synthesis of metal oxides from nanoparticles and their fabrication to photoelectrode is paramount for clarification. Within this chapter, nanoparticles are explained; photoactive metal oxides are listed and discussed. Most centrally, the synthesis of photo-active semiconductors from nanoparticles and a fabrication of the photoactive metal oxides to semiconductor electrodes are detailed.

Graphical Abstract

The purchased Nanoparticles are prepared as received through different steps. First, Nanoparticles are synthesized. Secondly, the intended Nanocomposites are formed using synthesis techniques such as sol-gel method. The formed Nanocomposite is characterized using different techniques. Thirdly, the Nanocomposite is pressed into a pellet. Fourthly, the copper wire is connected to the pellet using conductive silver paste. Finally, a transparent glass tube with opening at both ends sides was used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Li, G. Zhao, K. Zhao, J. Gao, T. Wu, An efficient and energy saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by electrocatalytic pre-oxidation. Dyes Pigm. 92(3), 923–928 (2012)

    Article  CAS  Google Scholar 

  2. W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chin. J. Catal. 35(11), 1781–1792 (2014)

    Article  CAS  Google Scholar 

  3. N. Chaukura, W. Gwenzi, N. Tavengwa, M.M. Manyuchi, Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environ. Dev. 19, 84–89 (2016)

    Article  Google Scholar 

  4. N. Chaukura, B.B. Mamba, S.B. Mishra, Porous materials for the sorption of emerging organic pollutants from aqueous systems: the case for conjugated microporous polymers. J. Water Process Eng. 16, 223–232 (2017)

    Article  Google Scholar 

  5. V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg et al., Emerging pollutants in the environment: a challenge for water resource management. Int. Soil Water Conserv. Res. 3(1), 57–65 (2015)

    Article  Google Scholar 

  6. J.T. Jasper, O.S. Shafaat, M.R. Hoffmann, Electrochemical transformation of trace organic contaminants in latrine wastewater. Environ. Sci. Technol. 50(18), 10198–10208 (2016)

    Article  CAS  Google Scholar 

  7. F.C. Moreira, R.A. Boaventura, E. Brillas, V.J. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017)

    Article  CAS  Google Scholar 

  8. S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol., C 31, 1–35 (2017)

    Article  CAS  Google Scholar 

  9. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 65, 201–222 (2018)

    Article  Google Scholar 

  10. R.M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-granados, M.J. Munoz-Portero, J. García-Antón, Elimination of pesticide atrazine by photoelectrocatalysis using a photoanode based on WO3 nanosheets. Chem. Eng. J. 350, 1114–1124 (2018)

    Article  CAS  Google Scholar 

  11. A.M.S. Solano, C.A. Martínez-Huitle, S. Garcia-Segura, A. El-Ghenymy, E. Brillas, Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye. Electrochim. Acta 197, 210–220 (2016)

    Article  CAS  Google Scholar 

  12. X.L. He, C. Song, Y.Y. Li, N. Wang, L. Xu, X. Han, D.S. Wei, Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicol. Environ. Saf. 150, 232–239 (2018)

    Article  CAS  Google Scholar 

  13. P. Nigam, I.M. Banat, D. Singh, R. Marchant, Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem. 31(5), 435–442 (1996)

    Article  CAS  Google Scholar 

  14. S.K. Tammina, B.K. Mandal, N.K. Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ. Nanotechnol. Monit. Manage. 10, 339–350 (2018)

    Google Scholar 

  15. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere 174, 665–688 (2017)

    Article  CAS  Google Scholar 

  16. M.J. Ahmed, B.H. Hameed, Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review. Ecotoxicol. Environ. Saf. 149, 257–266 (2018)

    Article  CAS  Google Scholar 

  17. S. Arslan, M. Eyvaz, E. Gürbulak, E. Yüksel, A review of state-of-the-art technologies in dye-containing wastewater treatment–the textile industry case, in Textile Wastewater Treatment. InTech (2016)

    Google Scholar 

  18. A. El-Ghenymy, F. Centellas, J.A. Garrido, R.M. Rodríguez, I. Sirés, P.L. Cabot, E. Brillas, Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim. Acta 130, 568–576 (2014)

    Article  CAS  Google Scholar 

  19. X. Florenza, S. Garcia-Segura, F. Centellas, E. Brillas, Comparative electrochemical degradation of salicylic and aminosalicylic acids: influence of functional groups on decay kinetics and mineralization. Chemosphere 154, 171–178 (2016)

    Article  CAS  Google Scholar 

  20. H.H. Ngo, W. Guo, J. Zhang, S. Liang, C. Ton-That, X. Zhang, Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Biores. Technol. 182, 353–363 (2015)

    Article  CAS  Google Scholar 

  21. E. do Vale-Júnior, S. Dosta, I.G. Cano, J.M. Guilemany, S. Garcia-Segura, C.A. Martínez-Huitle, Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn–Cu–Sb alloy anode. Chemosphere 148, 47–54 (2016)

    Article  CAS  Google Scholar 

  22. C.P. Silva, G. Jaria, M. Otero, V.I. Esteves, V. Calisto, Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: has a step forward already been taken? Biores. Technol. 250, 888–901 (2018)

    Article  CAS  Google Scholar 

  23. X. Meng, Z. Zhang, X. Li, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photochem. Photobiol., C 24, 83–101 (2015)

    Article  CAS  Google Scholar 

  24. S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl. Catal. B 132, 142–150 (2013)

    Article  CAS  Google Scholar 

  25. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag. 30(3), 504–520 (2010)

    Article  CAS  Google Scholar 

  26. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  CAS  Google Scholar 

  27. S. Olivera, H.B. Muralidhara, K. Venkatesh, V.K. Guna, K. Gopalakrishna, Y. Kumar, Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohyd. Polym. 153, 600–618 (2016)

    Article  CAS  Google Scholar 

  28. J. Brame, Q. Li, P.J. Alvarez, Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11), 618–624 (2011)

    Article  CAS  Google Scholar 

  29. E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Towards wastewater treatment: photo-assisted electrochemical degradation of 2-nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem. Eng. J. 317, 290–301 (2017)

    Article  CAS  Google Scholar 

  30. M.M. Islam, S. Basu, Understanding photoelectrochemical degradation of methyl orange using TiO2/Ti mesh as photocathode under visible light. J. Environ. Chem. Eng. 4(3), 3554–3561 (2016)

    Article  CAS  Google Scholar 

  31. S.K. Tammina, B.K. Mandal, N.K. Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ. Nanotechnol. Monit. Manag. 10, 339–350 (2018)

    Google Scholar 

  32. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1), 1–59 (2009)

    Article  CAS  Google Scholar 

  33. I. Poulios, D. Makri, X. Prohaska, Photocatalytic treatment of olive milling waste water: oxidation of protocatechuic acid. Global Nest: Int. J. 1(1), 55–62 (1999)

    Google Scholar 

  34. B.K. Koo, D.Y. Lee, H.J. Kim, W.J. Lee, J.S. Song, H.J. Kim, Seasoning effect of dye-sensitized solar cells with different counter electrodes. J. Electroceram. 17(1), 79–82 (2006)

    Article  CAS  Google Scholar 

  35. J. Luo, M. Hepel, Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim. Acta 46(19), 2913–2922 (2001)

    Article  CAS  Google Scholar 

  36. D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala’a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87, 366–374 (2016)

    Article  CAS  Google Scholar 

  37. V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 44(19), 7200–7205 (2010)

    Article  CAS  Google Scholar 

  38. G. Elango, S.M. Roopan, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol., B 155, 34–38 (2016)

    Article  CAS  Google Scholar 

  39. Y. Ding, Y. Zhou, W. Nie, P. Chen, MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Appl. Surf. Sci. 357, 1606–1612 (2015)

    Article  CAS  Google Scholar 

  40. I.M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király et al., WO3 photocatalysts: influence of structure and composition. J. Catal. 294, 119–127 (2012)

    Article  CAS  Google Scholar 

  41. H. Ma, Q. Zhuo, B. Wang, Electro-catalytic degradation of methylene blue wastewater assisted by Fe2O3-modified kaolin. Chem. Eng. J. 155(1–2), 248–253 (2009)

    Article  CAS  Google Scholar 

  42. B. Jiang, L. Jiang, X. Shi, W. Wang, G. Li, F. Zhu, D. Zhang, Ag2O/TiO2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel. Sci. Technol. 73(2), 314–321 (2015)

    Article  CAS  Google Scholar 

  43. X. Li, H. Xu, W. Yan, Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF). Appl. Surf. Sci. 389, 278–286 (2016)

    Article  CAS  Google Scholar 

  44. L. Wang, H. Zhai, G. Jin, X. Li, C. Dong, H. Zhang et al., 3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Phys. Chem. Chem. Phys. 19(25), 16576–16585 (2017)

    Article  CAS  Google Scholar 

  45. J. Zhang, Z. Xiong, X.S. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21(11), 3634–3640 (2011)

    Article  CAS  Google Scholar 

  46. E. Vasilaki, M. Vamvakaki, N. Katsarakis, Complex ZnO-TiO2 core-shell flower-like architectures with enhanced photocatalytic performance and superhydrophilicity without UV irradiation. Langmuir 34(31), 9122–9132 (2018)

    Article  CAS  Google Scholar 

  47. Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen et al., Design and synthesis of Cu@ CuS yolk–shell structures with enhanced photocatalytic activity. Nano-micro Lett. 9(3), 35 (2017)

    Article  CAS  Google Scholar 

  48. H.H. Cheng, S.S. Chen, S.Y. Yang, H.M. Liu, K.S. Lin, Sol-gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO2 catalysts. Materials 11(6), 939 (2018)

    Article  CAS  Google Scholar 

  49. Y. Li, C. Ji, Y.C. Chi, Z.H. Dan, H.F. Zhang, F.X. Qin, Fabrication and photocatalytic activity of Cu2O nanobelts on nanoporous Cu substrate. Acta Metall. Sin. (Eng. Lett.) 32(1), 63–73 (2019)

    Article  CAS  Google Scholar 

  50. M.A.B. Adnan, K. Arifin, L.J. Minggu, M.B. Kassim, Titanate-based perovskites for photochemical and photoelectrochemical water splitting applications: a review. Int. J. Hydr. Energy (2018)

    Google Scholar 

  51. C. Wu, Z. Gao, S. Gao, Q. Wang, H. Xu, Z. Wang et al., Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation. J. Energy Chem. 25(4), 726–733 (2016)

    Article  Google Scholar 

  52. S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@ m-TiO2 nanocomposite. Sol. Energy Mater. Sol. Cells 141, 162–170 (2015)

    Article  CAS  Google Scholar 

  53. G.W. An, M.A. Mahadik, W.S. Chae, H.G. Kim, M. Cho, J.S. Jang, Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: effects of the light trapping and optimum charge transfer. Appl. Surf. Sci. 440, 688–699 (2018)

    Article  CAS  Google Scholar 

  54. Y. Huang, H. Cai, D. Feng, D. Gu, Y. Deng, B. Tu et al., One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem. Commun. 23, 2641–2643 (2008)

    Article  CAS  Google Scholar 

  55. A. Ray. Electrodeposition of thin films for low-cost solar cells, in Electroplating of Nanostructures. IntechOpen (2015)

    Google Scholar 

  56. O.J. Ilegbusi, S.N. Khatami, L.I. Trakhtenberg, Spray pyrolysis deposition of single and mixed oxide thin films. Mater. Sci. Appl. 8(02), 153 (2017)

    CAS  Google Scholar 

  57. N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta 82, 98–102 (2012)

    Article  CAS  Google Scholar 

  58. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C 13(3), 169–189 (2012)

    Article  CAS  Google Scholar 

  59. S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, S. Zhang, Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interfaces. 5(21), 11129–11135 (2013)

    Article  CAS  Google Scholar 

  60. J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, Porous photocatalysts for advanced water purifications. J. Mater. Chem. 20(22), 4512–4528 (2010)

    Article  CAS  Google Scholar 

  61. C. Fu, M. Li, H. Li, C. Li, X. Guo Wu, B. Yang, Fabrication of Au nanoparticle/TiO2 hybrid films for photoelectrocatalytic degradation of methyl orange. J. Alloy. Compd. 692, 727–733 (2017)

    Article  CAS  Google Scholar 

  62. D. Liu, J. Zhou, J. Wang, R. Tian, X. Li, E. Nie et al., Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode. Chem. Eng. J. 344, 332–341 (2018)

    Article  CAS  Google Scholar 

  63. D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, Z. Sun, Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185, 574–581 (2017)

    Article  CAS  Google Scholar 

  64. D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Current Opin. Green Sustain. Chem. 6, 78–84 (2017)

    Article  Google Scholar 

  65. J. Tao, Z. Gong, G. Yao, Y. Cheng, M. Zhang, J. Lv et al., Enhanced photocatalytic and photoelectrochemical properties of TiO2 nanorod arrays sensitized with CdS nanoplates. Ceram. Int. 42(10), 11716–11723 (2016)

    Article  CAS  Google Scholar 

  66. E.V. dos Santos, O. Scialdone, Photo-electrochemical technologies for removing organic compounds in wastewater, in Electrochemical Water and Wastewater Treatment (2018), pp. 239–266

    Google Scholar 

  67. S.H.S. Chan, T. Yeong Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 86(9), 1130–1158 (2011)

    Article  CAS  Google Scholar 

  68. R.M. Asmussen, M. Tian, A. Chen, A new approach to wastewater remediation based on bifunctional electrodes. Environ. Sci. Technol. 43(13), 5100–5105 (2009)

    Article  CAS  Google Scholar 

  69. G.R.P. Malpass, D.W. Miwa, A.C.P. Miwa, S.A.S. Machado, A.J. Motheo,. Photo-assisted electrochemical oxidation of atrazine on a commercial Ti/Ru0. 3Ti0. 7O2 DSA electrode. Environ. Sci. Technol. 41(20), 7120–7125 (2007)

    Google Scholar 

  70. O.M. Ama, N. Mabuba, O.A. Arotiba, Synthesis, characterization, and application of exfoliated graphite/zirconium nanocomposite electrode for the photoelectrochemical degradation of organic dye in water. Electrocatalysis 6(4), 390–397 (2015)

    Article  CAS  Google Scholar 

  71. Y.M. Hunge, Photoelectrocatalytic degradation of methylene blue using spray deposited ZnO thin films under UV illumination. MO J. Polym. Sci. 1, 00020 (2017)

    Google Scholar 

  72. Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)

    Article  CAS  Google Scholar 

  73. N. Lezana, F. Fernández-Vidal, C. Berríos, E. Garrido-Ramírez, Electrochemical and photo-electrochemical processes of methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane. J. Chil. Chem. Soc. 62(2), 3529–3534 (2017)

    Article  CAS  Google Scholar 

  74. Y.J. Jang, C. Simer, T. Ohm, Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Mater. Res. Bull. 41(1), 67–77 (2006)

    Article  CAS  Google Scholar 

  75. O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chem. Eng. J. 164(1), 77–84 (2010)

    Article  CAS  Google Scholar 

  76. G. Nagaraju, G.C. Shivaraju, G. Banuprakash, D. Rangappa, Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater. Today: Proc. 4(11), 11700–11705 (2017)

    Google Scholar 

  77. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B 203, 740–752 (2017)

    Article  CAS  Google Scholar 

  78. M. Brzezińska, P. García-Muñoz, A. Ruppert, N. Keller, Photoactive ZnO materials for solar light-induced CuxO–ZnO catalyst preparation. Materials 11(11), 2260 (2018)

    Article  CAS  Google Scholar 

  79. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 103, 50–65 (2016)

    Article  CAS  Google Scholar 

  80. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(2–3), 520–529 (2009)

    Article  CAS  Google Scholar 

  81. X. Ma, Z. Sun, X. Hu, Synthesis of tin and molybdenum co-doped TiO2 nanotube arrays for the photoelectrocatalytic oxidation of phenol in aqueous solution. Mater. Sci. Semicond. Process. 85, 150–159 (2018)

    Article  CAS  Google Scholar 

  82. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings? Res. Chem. Intermed. 34(4), 381–392 (2008)

    Article  CAS  Google Scholar 

  83. W. Liao, J. Yang, H. Zhou, M. Murugananthan, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim. Acta 136, 310–317 (2014)

    Article  CAS  Google Scholar 

  84. C. Wang, F. Wang, M. Xu, C. Zhu, W. Fang, Y. Wei, Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition. J. Electroanal. Chem. 759, 158–166 (2015)

    Article  CAS  Google Scholar 

  85. P. Prasannalakshmi, N. Shanmugam, Phase-dependant photochemistry of TiO2 nanoparticles in the degradation of organic dye methylene blue under solar light irradiation. Appl. Phys. A 123(9), 586 (2017)

    Article  CAS  Google Scholar 

  86. S.G. Kim, L.K. Dhandole, Y.S. Seo, H.S. Chung, W.S. Chae, M. Cho, J.S. Jang, Active composite photocatalyst synthesized from inactive Rh & Sb doped TiO2 nanorods: Enhanced degradation of organic pollutants & antibacterial activity under visible light irradiation. Appl. Catal. A 564, 43–55 (2018)

    Article  CAS  Google Scholar 

  87. S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, Photoelectrocatalytic activity of immobilized Yb doped WO3 photocatalyst for degradation of methyl orange dye. J. Energy Chem. 26(3), 440–447 (2017)

    Article  Google Scholar 

  88. P. Niu, D. Wang, A. Wang, Y. Liang, X. Wang, Fabrication of bifunctional TiO2/POM microspheres using a layer-by-layer method and photocatalytic activity for methyl orange degradation. J. Nanomater. (2018)

    Google Scholar 

  89. R. Daghrir, P. Drogui, D. Robert, Photoelectrocatalytic technologies for environmental applications. J. Photochem. Photobiol., A 238, 41–52 (2012)

    Article  CAS  Google Scholar 

  90. C.S. Tseng, T. Wu, Y.W. Lin, Facile synthesis and characterization of Ag3PO4 microparticles for degradation of organic dyestuffs under white-light light-emitting-diode irradiation. Materials 11(5), 708 (2018)

    Article  CAS  Google Scholar 

  91. T.J. Whang, M.T. Hsieh, H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci. 258(7), 2796–2801 (2012)

    Article  CAS  Google Scholar 

  92. O.M. Ama, O.A. Arotiba, Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. J. Electroanal. Chem. 803, 157–164 (2017)

    Article  CAS  Google Scholar 

  93. O.M. Ama, N. Kumar, F.V. Adams, S.S. Ray, Efficient and cost-effective photoelectrochemical degradation of dyes in wastewater over an exfoliated graphite-MoO3 nanocomposite electrode. Electrocatalysis 1–9 (2018)

    Google Scholar 

  94. T. Ndlovu, O.A. Arotiba, S. Sampath, R.W. Krause, B.B. Mamba, Electrochemical detection and removal of lead in water using poly (propylene imine) modified re-compressed exfoliated graphite electrodes. J. Appl. Electrochem. 41(12), 1389–1396 (2011)

    Article  CAS  Google Scholar 

  95. O.M. Ama, Synthesis, characterisation and photoelectrochemical studies of graphite/zinc oxide nanocomposites with the application exfoliated electrodes for the degradation of methylene blue. Int. J. Nano Med. Eng. 2(8), 145–151 (2017)

    Google Scholar 

  96. M. Toyoda, M. Inagaki, Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38(2), 199–210 (2000)

    Article  CAS  Google Scholar 

  97. A. Goshadrou, A. Moheb, Continuous fixed bed adsorption of CI Acid Blue 92 by exfoliated graphite: an experimental and modeling study. Desalination 269(1–3), 170–176 (2011)

    Article  CAS  Google Scholar 

  98. B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B 41(4), 427–433 (2003)

    Article  CAS  Google Scholar 

  99. K. Yong, Z.L. Wang, W. Yu, Y. Jia, Z.D. Chen, Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mater. 26(6), 459–464 (2011)

    Article  CAS  Google Scholar 

  100. D.D.L. Chung, Exfoliation of graphite. J. Mater. Sci. 22(12), 4190–4198 (1987)

    Article  CAS  Google Scholar 

  101. K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)

    Article  CAS  Google Scholar 

  102. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet—epoxy composite thermal interface materials. J. Phys. Chem. C 111(21), 7565–7569 (2007)

    Article  CAS  Google Scholar 

  103. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 89(2), 196–205 (2014)

    Article  CAS  Google Scholar 

  104. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 25(19), 11808–11814 (2009)

    Article  CAS  Google Scholar 

  105. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  CAS  Google Scholar 

  106. D.D.L. Chung, A review of exfoliated graphite. J. Mater. Sci. 51(1), 554–568 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onoyivwe Monday Ama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ama, O.M., Khoele, K., Delport, D.J., Ray, S.S., Osifo, P.O. (2020). Synthesis and Fabrication of Photoactive Nanocomposites Electrodes for the Degradation of Wastewater Pollutants. In: Ama, O., Ray, S. (eds) Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43346-8_2

Download citation

Publish with us

Policies and ethics