Advertisement

Backscattering Coefficient

Chapter
  • 211 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 271)

Abstract

The backscattered electron emission coefficient is defined as the fraction of electrons of the primary beam emerging from the surface of an electron-irradiated target. Secondary electrons, generated in the solid by a cascade process of extraction of the atomic electrons, are not included in the definition of the backscattering coefficient.

References

  1. 1.
    M. Dapor Phys. Rev. B 46, 618 (1992)Google Scholar
  2. 2.
    M. Dapor, Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  3. 3.
    R. Cimino, I.R. Collins, M.A. Furman, M. Pivi, F. Ruggiero, G. Rumolo, F. Zimmermann, Phys. Rev. Lett. 93, 014801 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Furman, V.H. Chaplin, Phys. Rev. Spec. Topics - Accel. Beams 9, 034403 (2006)Google Scholar
  5. 5.
    M. Vicanek, H.M. Urbassek, Phys. Rev. B 44, 7234 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    M. Dapor, J. Appl. Phys. 79, 8406 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 46, 199 (1988)CrossRefGoogle Scholar
  8. 8.
    R.H. Ritchie, Phys. Rev. 106, 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N.F. Mott, Proc. R. Soc. Lond. Ser. 124, 425 (1929)ADSGoogle Scholar
  10. 10.
    H.E. Bishop, in Proceedings of 4ème Congrès International d’Optique des Rayons X et de Microanalyse (1967), pp. 153–158Google Scholar
  11. 11.
    H.J. Hunger, L.G. Küchler, Phys. Status Solidi A 56, K45 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 37, 978 (2005)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    I.M. Bronstein, B.S. Fraiman, Vtorichnaya Elektronnaya Emissiya (Nauka, Moskva, 1969)Google Scholar
  15. 15.
    L. Reimer, C. Tolkamp, Scanning 3, 35 (1980)CrossRefGoogle Scholar
  16. 16.
    T. Koshikawa, R. Shimizu, J. Phys. D. Appl. Phys. 6, 1369 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    R. Böngeler, U. Golla, M. Kussens, R. Reimer, B. Schendler, R. Senkel, M. Spranck, Scanning 15, 1 (1993)CrossRefGoogle Scholar
  18. 18.
    J. Ch, Kuhr and H.J. Fitting, Phys. Status Solidi A 172, 433 (1999)Google Scholar
  19. 19.
    M.M. El Gomati, C.G. Walker, A.M.D. Assa’d, M. Zadra\(\check{\text{z}}\)il, Scanning 30, 2 (2008)Google Scholar
  20. 20.
    M. Dapor, J. Appl. Phys. 95, 718 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Dapor, Surf. Interface Anal. 38, 1198 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Dapor, Surf. Interface Anal. 40, 714 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, S. Gialanella, Nucl. Instrum. Methods Phys. Res. B 269, 1672 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, M. Crivellari, S. Gialanella, Surf. Interface Anal. 45, 677 (2013)CrossRefGoogle Scholar
  25. 25.
    K. Kanaya, S. Okayama, J. Phys. D. Appl. Phys. 5, 43 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    M. Dapor, J. Electron Spectrosc. Relat. Phenom. 151, 182 (2006)CrossRefGoogle Scholar
  27. 27.
    G.C. Aers, J. Appl. Phys. 76, 1622 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related AreasTrentoItaly

Personalised recommendations