Monte Carlo Strategies

Part of the Springer Tracts in Modern Physics book series (STMP, volume 271)


Monte Carlo is one of the most powerful theoretical methods for evaluating the physical quantities related to the interaction of electrons with a solid target. A Monte Carlo simulation can be considered as an idealized experiment. It is based on several fundamental ingredients. It is necessary to have a good knowledge of them—in particular of the energy loss and angular deflection phenomena—to obtain a good simulation. All the cross-sections and mean free paths have to be previously accurately calculated: they are then used in the Monte Carlo code in order to obtain the macroscopic characteristics of the interaction processes by simulating a large number of single particle trajectories and then averaging them. Due to the recent evolution in computer calculation capability, we are now able to obtain statistically significant results in very short calculation times.


  1. 1.
    S. Horiguchi, M. Suzuki, T. Kobayashi, H. Yoshino, Y. Sakakibara, Appl. Phys. Lett. 39, 512 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    G. Messina, A. Paoletti, S. Santangelo, A. Tucciarone, La Rivista del Nuovo Cimento 15, 1 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Perkins, Phys. Rev. 126, 1781 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    M. Dapor, Phys. Rev. B 46, 618 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    R. Shimizu, Ding Ze-Jun. Rep. Prog. Phys. 55, 487 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Ritchie, Phys. Rev. 106, 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Ganachaud, A. Mokrani, Surf. Sci. 334, 329 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    H. Bichsel, Nucl. Instrum. Methods Phys. Res. B 52, 136 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    L. Calliari, M. Dapor, G. Garberoglio, S. Fanchenko Surf, Interface Anal. 46, 340 (2014)Google Scholar
  11. 11.
    J. Llacer, E.L. Garwin, J. Appl. Phys. 40, 2766 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    M. Dapor, Nucl. Instrum. Methods Phys. Res. B 267, 3055 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P. Kazemian, Progress Towards Quantitive Dopant Profiling with the Scanning Electron Microscope (Doctorate Dissertation, University of Cambridge, 2006)Google Scholar
  14. 14.
    Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A. Jablonski, C.J. Powell, Surf. Sci. 551, 106 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M. Dapor, L. Calliari, S. Fanchenko, Surf. Interface Anal. 44, 1110 (2012)CrossRefGoogle Scholar
  18. 18.
    Z.-J. Ding, R. Shimizu, Phys. Rev. B 61, 14128 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M. Novák, Surf. Sci. 602, 1458 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M. Novák, J. Phys. D: Appl. Phys. 42, 225306 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H. Jin, H. Yoshikawa, H. Iwai, S. Tanuma, S. Tougaard, e-J. Surf. Sci. Nanotech. 7, 199 (2009)Google Scholar
  22. 22.
    H. Jin, H. Shinotsuka, H. Yoshikawa, H. Iwai, S. Tanuma, S. Tougaard, J. Appl. Phys. 107, 083709 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, I. Abril, K. Kostarelos, J. Appl. Phys. 110, 054304 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B. Da, S.F. Mao, Y. Sun, and Z.J. Ding, e-J. Surf. Sci. Nanotechnol. 10, 441 (2012)Google Scholar
  25. 25.
    B. Da, Y. Sun, S.F. Mao, Z.M. Zhang, H. Jin, H. Yoshikawa, S. Tanuma, Z.J. Ding, J. Appl. Phys. 113, 214303 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    F. Salvat-Pujol, Secondary-Electron Emission from Solids: Coincidence Experiments and Dielectric Formalism (Doctorate Dissertation, Technischen Universität Wien, 2012)Google Scholar
  27. 27.
    F. Salvat-Pujol, W.S.M. Werner, Surf. Interface Anal. 45, 873 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Tang, Z.M. Zhang, B. Da, J.B. Gong, K. Goto, Z.J. Ding, Phys. B 423, 64 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D. Liljequist, Rad. Phys. Chem 77, 835 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D. Liljequist, J. Electron. Spectrosc. Relat. Phenom. 189, 5 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related AreasTrentoItaly

Personalised recommendations