Advertisement

Scattering Mechanisms

Chapter
  • 198 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 271)

Abstract

This chapter is devoted to the main mechanisms of scattering (elastic, quasi-elastic, and inelastic) that are relevant to the description of the interaction of electron beams with solid targets.

References

  1. 1.
    N.F. Mott, Proc. R. Soc. London Ser. 124, 425 (1929)ADSGoogle Scholar
  2. 2.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  3. 3.
    H.A. Bethe, Ann. Phys. Leipzig 5, 325 (1930)ADSCrossRefGoogle Scholar
  4. 4.
    R.O. Lane, D.J. Zaffarano, Phys. Rev. 94, 960 (1954)ADSCrossRefGoogle Scholar
  5. 5.
    K. Kanaya, S. Okayama, J. Phys. D. Appl. Phys. 5, 43 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Ritchie, Phys. Rev. 106, 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J.P. Ganachaud, A. Mokrani, Surf. Sci. 334, 329 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kessler, Polarized Electrons (Springer, Berlin, 1985)CrossRefGoogle Scholar
  9. 9.
    P.G. Burke, C.J. Joachain, Theory of Electron-Atom Collisions (Plenum Press, New York, 1995)CrossRefGoogle Scholar
  10. 10.
    P. Sigmund, Particle Penetration and Radiation Effects (Springer, Berlin, 2006)CrossRefGoogle Scholar
  11. 11.
    R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. (Springer, New York, 2011)CrossRefGoogle Scholar
  12. 12.
    R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Jablonski, F. Salvat, C.J. Powell, J. Phys. Chem. Data 33, 409 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    F. Salvat, A. Jablonski, C.J. Powell, Comp. Phys. Comm. 165, 157 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    M. Dapor, J. Appl. Phys. 79, 8406 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Dapor, Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  17. 17.
    M.L. Jenkin, M.A. Kirk, Characterization of Radiation Damage by Electron Microscopy, IOP Series Microscopy in Materials Science (Institute of Physics, Bristol, 2001)CrossRefGoogle Scholar
  18. 18.
    G. Wentzel, Z. Phys. 40, 590 (1927)ADSCrossRefGoogle Scholar
  19. 19.
    S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Phys. Rev. B 79, 085432 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Taioli, S. Simonucci, M. Dapor, Comput. Sci. Discovery 2, 015002 (2009)Google Scholar
  21. 21.
    S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Phys. Rep. 493, 237 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D. Bohm, Quantum Theory (Dover, New York, 1989)zbMATHGoogle Scholar
  23. 23.
    F. Salvat, R. Mayol, Comput. Phys. Commun. 74, 358 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    E. Reichert, Z. Phys. 173, 392 (1963)ADSCrossRefGoogle Scholar
  25. 25.
    M. Dapor, Phys. Rev. B 46, 618 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    M. Dapor, Sci. Rep. 8, 5370 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    O. Berger, J. Kessler, J. Phys. B: Atom. Molec. Phys. 19, 3539 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    H. Cho, Y.S. Park, H. Tanaka, S.J. Buckman, J. Phys. B: At. Mol. Opt. Phys. 37, 625 (2004)Google Scholar
  29. 29.
    W.M. Johnstone, W.R. Newell, J. Phys. B: At. Mol. Opt. Phys. 24, 3633 (1991)Google Scholar
  30. 30.
    J. Llacer, E.L. Garwin, J. Appl. Phys. 40, 2766 (1969)Google Scholar
  31. 31.
    Report 49 of the International Commission on Radiation Units and Measurements, Stopping Powers and Ranges for Protons and Alpha Particles, Bethesda, Maryland, USA (1993)Google Scholar
  32. 32.
    R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977)Google Scholar
  33. 33.
    F. Yubero, S. Tougaard, Phys. Rev. B 46, 2486 (1992)Google Scholar
  34. 34.
    H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1982)Google Scholar
  35. 35.
    A. Cohen-Simonsen, F. Yubero, S. Tougaard, Phys. Rev. B 56, 1612 (1997)Google Scholar
  36. 36.
    J.J. Ritsko, L.J. Brillson, R.W. Bigelow, T.J. Fabish, J. Chem. Phys. 69, 3931 (1978)Google Scholar
  37. 37.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982)Google Scholar
  38. 38.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 54, 181 (1993)Google Scholar
  39. 39.
    U. Buechner, J. Phys. C: Solid State Phys. 8, 2781 (1975)Google Scholar
  40. 40.
    D.R. Penn, Phys. Rev. B 35, 482 (1987)Google Scholar
  41. 41.
    J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 46, 199 (1988)Google Scholar
  42. 42.
    J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 50, 323 (1990)Google Scholar
  43. 43.
    Z. Tan, Y.Y. Xia, X. Liu, M. Zhao, Microelectron. Eng. 77, 285 (2005)CrossRefGoogle Scholar
  44. 44.
    J.C. Ashley, V.E. Anderson, IEEE Trans. Nucl. Sci. NS28, 4132 (1981)Google Scholar
  45. 45.
    S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 17, 911 (1991)Google Scholar
  46. 46.
    D. Emfietzoglou, I. Kyriakou, R. Garcia-Molina, I. Abril, J. Appl. Phys. 114, 144907 (2013)Google Scholar
  47. 47.
    R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Nucl. Instrum. Methods Phys. Res. B 249, 6 (2006)Google Scholar
  48. 48.
    R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, Surf. Interface Anal. (2016).  https://doi.org/10.1002/sia.5947
  49. 49.
    M. Dapor, Front. Mater. 2, 27 (2015)Google Scholar
  50. 50.
    I. Abril, R. Garcia-Molina, C.D. Denton, F.J. Pérez-Pérez, N.R. Arista, Phys. Rev. A 58, 357 (1998)Google Scholar
  51. 51.
    N.D. Mermin, Phys. Rev. B 1, 2362 (1970)Google Scholar
  52. 52.
    W. de la Cruz, F. Yubero, Surf. Interface Anal. 39, 460 (2007)Google Scholar
  53. 53.
    S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)Google Scholar
  54. 54.
    M. Dapor, Nucl. Instrum. Methods Phys. Res. B 352, 190 (2015)Google Scholar
  55. 55.
    V.I. Ochkur, Soviet Phys. J.E.T.P. 18, 503 (1964)Google Scholar
  56. 56.
    J.M. Fernández-Varea, R. Mayol, D. Liljequist, F. Salvat, J. Phys.: Condens. Matter 5, 3593 (1993)ADSGoogle Scholar
  57. 57.
    P. de Vera, I. Abril, R. Garcia-Molina, J. Appl. Phys. 109, 094901 (2011)Google Scholar
  58. 58.
    J.D. Bourke, Phys. Rev. B 100, 184311 (2019)Google Scholar
  59. 59.
    C.J. Powell, J.B. Swann, Phys. Rev. 115, 869 (1959)Google Scholar
  60. 60.
    Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)Google Scholar
  61. 61.
    Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    M. Dapor, L. Calliari, S. Fanchenko, Surf. Interface Anal. 44, 1110 (2012)Google Scholar
  63. 63.
    A. Jablonski, C.J. Powell, Surf. Sci. 551, 106 (2004)Google Scholar
  64. 64.
    I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, I. Abril, K. Kostarelos, J. Appl. Phys. 110, 054304 (2011)Google Scholar
  65. 65.
    M. Azzolini, O.Y. Ridzel, P.S. Kaplya, V. Afanas’ev, N.M. Pugno, S. Taioli, M. Dapor, Comp. Mat. Sci. 173, 109420 (2020)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related AreasTrentoItaly

Personalised recommendations