Advertisement

Electron Transport in Solids

Chapter
  • 193 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 271)

Abstract

The Monte Carlo (MC) method is used for evaluating the many physical quantities necessary to the study of the interactions of particle-beams with solid targets. Studies of backscattered and secondary electrons are of great interest for many analytical techniques. A better comprehension of the processes which occur before the emission of backscattered and secondary electrons allows a more comprehensive understanding of surface physics.

References

  1. 1.
    R. Shimizu, Ding Ze-Jun. Rep. Prog. Phys. 55, 487 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    D.C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, Oxford, 1995)Google Scholar
  3. 3.
    M. Dapor, Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  4. 4.
    C.G.H. Walker, L. Frank, I. Müllerová, Scanning 9999, 1 (2016)Google Scholar
  5. 5.
    N.F. Mott, Proc. R. Soc. Lond. Ser. 124, 425 (1929)Google Scholar
  6. 6.
    R.H. Ritchie, Phys. Rev. 106, 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Ganachaud, A. Mokrani, Surf. Sci. 334, 329 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    M. Dapor, Phys. Rev. B 46, 618 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    P. Sigmund, Particle Penetration and Radiation Effects (Springer, Berlin, 2006)CrossRefGoogle Scholar
  11. 11.
    R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    H. Ibach, Electron Spectroscopy for Surface Analysis (Springer, Berlin, 1977)CrossRefGoogle Scholar
  13. 13.
    P.M. Echenique, R.H. Ritchie, N. Barberan, J. Inkson, Phys. Rev. B 23, 6486 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1982)Google Scholar
  15. 15.
    D.L. Mills, Phys. Rev. B 34, 6099 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    D.R. Penn, Phys. Rev. B 35, 482 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 46, 199 (1988)CrossRefGoogle Scholar
  18. 18.
    F. Yubero, S. Tougaard, Phys. Rev. B 46, 2486 (1992)Google Scholar
  19. 19.
    Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A. Cohen-Simonsen, F. Yubero, S. Tougaard, Phys. Rev. B 56, 1612 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Z.-J. Ding, J. Phys. Condens. Matter 10, 1733 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Z.-J. Ding, R. Shimizu, Phys. Rev. B 61, 14128 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Z.-J. Ding, H.M. Li, Q.R. Pu, Z.M. Zhang, R. Shimizu, Phys. Rev. B 66, 085411 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    W.S.M. Werner, W. Smekal, C. Tomastik, H. Störi, Surf. Sci. 486, L461 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. (Springer, New York, 2011)CrossRefGoogle Scholar
  27. 27.
    R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Nucl. Instrum. Methods Phys. Res. B 249, 6 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Phys. Rev. B 79, 085432 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S. Taioli, S. Simonucci, M. Dapor, Comput. Sci. Discovery 2, 015002 (2009)Google Scholar
  31. 31.
    S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Phys. Rep. 493, 237 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    G. Gergely, Progr. Surf. Sci. 71, 31 (2002)Google Scholar
  33. 33.
    A. Jablonski, Progr. Surf. Sci. 74, 357 (2003)Google Scholar
  34. 34.
    D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, G. Gergely, A. Sulyok, Surf. Interface Anal. 31, 1019 (2001)Google Scholar
  35. 35.
    A. Sulyok, G. Gergely, M. Menyhard, J. Tóth, D. Varga, L. Kövér, Z. Berènyi, B. Lesiak, A. Jablonski, Vacuum 63, 371 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    G.T. Orosz, G. Gergely, M. Menyhard, J. Tóth, D. Varga, B. Lesiak, A. Jablonski, Surf. Sci. 566–568, 544 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    F. Yubero, V.J. Rico, J.P. Espinós, J. Cotrino, A.R. González-Elipe, Appl. Phys. Lett. 87, 084101 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    V.J. Rico, F. Yubero, J.P. Espinós, J. Cotrino, A.R. González-Elipe, D. Garg, S. Henry, Diam. Relat. Mater. 16, 107 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, Surf. Interface Anal. 38, 544 (2006)CrossRefGoogle Scholar
  40. 40.
    M. Filippi, L. Calliari, Surf. Interface Anal. 40, 1469 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Filippi, L. Calliari, C. Verona, G. Verona-Rinati, Surf. Sci. 603, 2082 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    P. Auger, P. Ehrenfest, R. Maze, J. Daudin, R.A. Fréon, Rev. Modern Phys. 11, 288 (1939)ADSCrossRefGoogle Scholar
  43. 43.
    L. Meitner, Z. Phys. 17, 54 (1923)ADSCrossRefGoogle Scholar
  44. 44.
    G. Wentzel, Z. Phys. 43, 524 (1927)ADSCrossRefGoogle Scholar
  45. 45.
    M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, S. Gialanella, Nucl. Instrum. Methods Phys. Res. B 269, 1672 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, M. Crivellari, S. Gialanella, Surf. Interface Anal. 45, 677 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Dapor, L. Calliari, G. Scarduelli, Nucl. Instrum. Methods Phys. Res. B 269, 1675 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    M. Dapor, L. Calliari, S. Fanchenko, Surf. Interface Anal. 44, 1110 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Dapor, M. Ciappa, W. Fichtner, J. Micro/Nanolith, MEMS MOEMS 9, 023001 (2010)Google Scholar
  50. 50.
    M. Ciappa, A. Koschik, M. Dapor, W. Fichtner, Microelectr. Reliab. 50, 1407 (2010)CrossRefGoogle Scholar
  51. 51.
    A. Koschik, M. Ciappa, S. Holzer, M. Dapor, W. Fichtner, Proc. SPIE 7729, 77290X–1 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    M. Dapor, M.A.E. Jepson, B.J. Inkson, C. Rodenburg, Microsc. Microanal. 15, 237 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    C. Rodenburg, M.A.E. Jepson, E.G.T. Bosch, M. Dapor, Ultramicroscopy 110, 1185 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related AreasTrentoItaly

Personalised recommendations