Skip to main content

Electron Energy Distributions

  • Chapter
  • First Online:
Book cover Transport of Energetic Electrons in Solids

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 271))

  • 512 Accesses

Abstract

As we know, the study of the electronic and optical properties of the matter is paramount for our comprehension of physical and chemical processes which occur in nanoclusters and solids [1]. Radiation damage, investigation of chemical composition, and electronic structure study, represent a few examples of the role played by the electron-matter interaction mechanisms. Electron spectroscopy and electron microscopy are fundamental tools to examine how electrons interact with the matter [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Martin, Electronic Structure. Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  2. M.D. Crescenzi, M.N. Piancastelli, Electron Scattering and Related Spectroscopies (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  3. R.G. Newton, Scattering Theory of Wave and Particle (Springer, New York, 1982)

    Book  Google Scholar 

  4. R. Cimino, I.R. Collins, M.A. Furman, M. Pivi, F. Ruggiero, G. Rumolo, F. Zimmermann, Phys. Rev. Lett. 93, 014801 (2004)

    Google Scholar 

  5. M.A. Furman, V.H. Chaplin, Phys. Rev. (Special Topics - Accelerators and Beams) 9, 034403 (2006)

    Google Scholar 

  6. M. Dapor, Appl. Surf. Sci. 391, 3 (2017)

    Google Scholar 

  7. B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982)

    Google Scholar 

  8. B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 54, 181 (1993)

    Google Scholar 

  9. J. Daniels, C.V. Festenberg, H. Raether, K. Zeppenfeld, Springer Tracts in Modern Physics, vol. 54 (Springer, Berlin, 1970), p. 78

    Google Scholar 

  10. H. Venghauss, Phys. Status Solidi B 71, 609 (1975)

    Google Scholar 

  11. A.G. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Phys. Rev. B 69, 245419 (2004)

    Google Scholar 

  12. U. Buechner, J. Phys. C: Solid State Phys. 8, 2781 (1975)

    Google Scholar 

  13. M. Dapor, L. Calliari, M. Filippi, Nucl. Instrum. Methods Phys. Res. B 255, 276 (2007)

    Google Scholar 

  14. M. Filippi, L. Calliari, M. Dapor, Phys. Rev. B 75, 125406 (2007)

    Google Scholar 

  15. M.H. Reilly, J. Phys. Chem. Solids 31, 1041 (1970)

    Google Scholar 

  16. S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Phys. Rep. 493, 237 (2010)

    Google Scholar 

  17. S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Phys. Rev. B 79, 085432 (2009)

    Google Scholar 

  18. S. Taioli, S. Simonucci, M. Dapor, Comput. Sci. Discovery 2, 015002 (2009)

    Google Scholar 

  19. G.A. van Riessen, S.M. Thurgate, D.E. Ramaker, J. Electron Spectrosc. Relat. Phenom. 161, 150 (2007)

    Google Scholar 

  20. G. Gergely, Prog. Surf. Sci. 71, 31 (2002)

    Google Scholar 

  21. A. Jablonski, Prog. Surf. Sci. 74, 357 (2003)

    Google Scholar 

  22. D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, G. Gergely, A. Sulyok, Surf. Interface Anal. 31, 1019 (2001)

    Google Scholar 

  23. A. Sulyok, G. Gergely, M. Menyhard, J. Tóth, D. Varga, L. Kövér, Z. Berènyi, B. Lesiak, A. Jablonski, Vacuum 63, 371 (2001)

    Google Scholar 

  24. G.T. Orosz, G. Gergely, M. Menyhard, J. Tóth, D. Varga, B. Lesiak, A. Jablonski, Surf. Sci. 566–568, 544 (2004)

    Google Scholar 

  25. F. Yubero, V.J. Rico, J.P. Espinós, J. Cotrino, A.R. González-Elipe, Appl. Phys. Lett. 87, 084101 (2005)

    Google Scholar 

  26. V.J. Rico, F. Yubero, J.P. Espinós, J. Cotrino, A.R. González-Elipe, D. Garg, S. Henry, Diam. Relat. Mater. 16, 107 (2007)

    Google Scholar 

  27. D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, Surf. Interface Anal. 38, 544 (2006)

    Google Scholar 

  28. M. Filippi, L. Calliari, Surf. Interface Anal. 40, 1469 (2008)

    Google Scholar 

  29. M. Filippi, L. Calliari, C. Verona, G. Verona-Rinati, Surf. Sci. 603, 2082 (2009)

    Google Scholar 

  30. P.A. Wolff, Phys. Rev. 95, 56 (1954)

    Google Scholar 

  31. G.F. Amelio, J. Vac. Sci. Technol. 7, 593 (1970)

    Google Scholar 

  32. H.W. Streitwolf, Ann. Physik 3, 183 (1959)

    Google Scholar 

  33. M.S. Chung, T.E. Everhart, J. Appl. Phys. 45, 707 (1974)

    Google Scholar 

  34. R. Shimizu, Z.-J. Ding, Rep. Prog. Phys. 55, 487 (1992)

    Google Scholar 

  35. M. Dapor, Nucl. Instrum. Methods Phys. Res. B 267, 3055 (2009)

    Google Scholar 

  36. M. Dapor, G.I.T. Imaging Microscopy 2, 38 (2016)

    Google Scholar 

  37. D.C. Joy, M.S. Prasad, H.M. Meyer III, J. Microsc. 215, 77 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Dapor .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dapor, M. (2020). Electron Energy Distributions. In: Transport of Energetic Electrons in Solids. Springer Tracts in Modern Physics, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-43264-5_10

Download citation

Publish with us

Policies and ethics