Advertisement

Electron Energy Distributions

Chapter
  • 191 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 271)

Abstract

As we know, the study of the electronic and optical properties of the matter is paramount for our comprehension of physical and chemical processes which occur in nanoclusters and solids [1]. Radiation damage, investigation of chemical composition, and electronic structure study, represent a few examples of the role played by the electron-matter interaction mechanisms. Electron spectroscopy and electron microscopy are fundamental tools to examine how electrons interact with the matter [2].

References

  1. 1.
    R.M. Martin, Electronic Structure. Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  2. 2.
    M.D. Crescenzi, M.N. Piancastelli, Electron Scattering and Related Spectroscopies (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  3. 3.
    R.G. Newton, Scattering Theory of Wave and Particle (Springer, New York, 1982)CrossRefGoogle Scholar
  4. 4.
    R. Cimino, I.R. Collins, M.A. Furman, M. Pivi, F. Ruggiero, G. Rumolo, F. Zimmermann, Phys. Rev. Lett. 93, 014801 (2004)Google Scholar
  5. 5.
    M.A. Furman, V.H. Chaplin, Phys. Rev. (Special Topics - Accelerators and Beams) 9, 034403 (2006)Google Scholar
  6. 6.
    M. Dapor, Appl. Surf. Sci. 391, 3 (2017)Google Scholar
  7. 7.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982)Google Scholar
  8. 8.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa, At. Data Nucl. Data Tables 54, 181 (1993)Google Scholar
  9. 9.
    J. Daniels, C.V. Festenberg, H. Raether, K. Zeppenfeld, Springer Tracts in Modern Physics, vol. 54 (Springer, Berlin, 1970), p. 78Google Scholar
  10. 10.
    H. Venghauss, Phys. Status Solidi B 71, 609 (1975)Google Scholar
  11. 11.
    A.G. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Phys. Rev. B 69, 245419 (2004)Google Scholar
  12. 12.
    U. Buechner, J. Phys. C: Solid State Phys. 8, 2781 (1975)Google Scholar
  13. 13.
    M. Dapor, L. Calliari, M. Filippi, Nucl. Instrum. Methods Phys. Res. B 255, 276 (2007)Google Scholar
  14. 14.
    M. Filippi, L. Calliari, M. Dapor, Phys. Rev. B 75, 125406 (2007)Google Scholar
  15. 15.
    M.H. Reilly, J. Phys. Chem. Solids 31, 1041 (1970)Google Scholar
  16. 16.
    S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Phys. Rep. 493, 237 (2010)Google Scholar
  17. 17.
    S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Phys. Rev. B 79, 085432 (2009)Google Scholar
  18. 18.
    S. Taioli, S. Simonucci, M. Dapor, Comput. Sci. Discovery 2, 015002 (2009)Google Scholar
  19. 19.
    G.A. van Riessen, S.M. Thurgate, D.E. Ramaker, J. Electron Spectrosc. Relat. Phenom. 161, 150 (2007)Google Scholar
  20. 20.
    G. Gergely, Prog. Surf. Sci. 71, 31 (2002)Google Scholar
  21. 21.
    A. Jablonski, Prog. Surf. Sci. 74, 357 (2003)Google Scholar
  22. 22.
    D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, G. Gergely, A. Sulyok, Surf. Interface Anal. 31, 1019 (2001)Google Scholar
  23. 23.
    A. Sulyok, G. Gergely, M. Menyhard, J. Tóth, D. Varga, L. Kövér, Z. Berènyi, B. Lesiak, A. Jablonski, Vacuum 63, 371 (2001)Google Scholar
  24. 24.
    G.T. Orosz, G. Gergely, M. Menyhard, J. Tóth, D. Varga, B. Lesiak, A. Jablonski, Surf. Sci. 566–568, 544 (2004)Google Scholar
  25. 25.
    F. Yubero, V.J. Rico, J.P. Espinós, J. Cotrino, A.R. González-Elipe, Appl. Phys. Lett. 87, 084101 (2005)Google Scholar
  26. 26.
    V.J. Rico, F. Yubero, J.P. Espinós, J. Cotrino, A.R. González-Elipe, D. Garg, S. Henry, Diam. Relat. Mater. 16, 107 (2007)Google Scholar
  27. 27.
    D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, Surf. Interface Anal. 38, 544 (2006)Google Scholar
  28. 28.
    M. Filippi, L. Calliari, Surf. Interface Anal. 40, 1469 (2008)Google Scholar
  29. 29.
    M. Filippi, L. Calliari, C. Verona, G. Verona-Rinati, Surf. Sci. 603, 2082 (2009)Google Scholar
  30. 30.
    P.A. Wolff, Phys. Rev. 95, 56 (1954)Google Scholar
  31. 31.
    G.F. Amelio, J. Vac. Sci. Technol. 7, 593 (1970)Google Scholar
  32. 32.
    H.W. Streitwolf, Ann. Physik 3, 183 (1959)Google Scholar
  33. 33.
    M.S. Chung, T.E. Everhart, J. Appl. Phys. 45, 707 (1974)Google Scholar
  34. 34.
    R. Shimizu, Z.-J. Ding, Rep. Prog. Phys. 55, 487 (1992)Google Scholar
  35. 35.
    M. Dapor, Nucl. Instrum. Methods Phys. Res. B 267, 3055 (2009)Google Scholar
  36. 36.
    M. Dapor, G.I.T. Imaging Microscopy 2, 38 (2016)Google Scholar
  37. 37.
    D.C. Joy, M.S. Prasad, H.M. Meyer III, J. Microsc. 215, 77 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related AreasTrentoItaly

Personalised recommendations