Skip to main content

Electron Transport in Solids

  • Chapter
  • First Online:
Transport of Energetic Electrons in Solids

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 271))

Abstract

The Monte Carlo (MC) method is used for evaluating the many physical quantities necessary to the study of the interactions of particle-beams with solid targets. Studies of backscattered and secondary electrons are of great interest for many analytical techniques. A better comprehension of the processes which occur before the emission of backscattered and secondary electrons allows a more comprehensive understanding of surface physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book we will use the expression stopping power instead of stopping force to indicate the energy loss per unit distance of the electron in the solid. Even if consistent with the units, and hence more accurate, the use in the literature of the expression stopping force, as observed by Peter Sigmund [10], is only slowly appearing, after a hundred years of use of the term stopping power.

References

  1. R. Shimizu, Ding Ze-Jun. Rep. Prog. Phys. 55, 487 (1992)

    Article  ADS  Google Scholar 

  2. D.C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, Oxford, 1995)

    Google Scholar 

  3. M. Dapor, Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems (Springer, Berlin, 2003)

    Book  Google Scholar 

  4. C.G.H. Walker, L. Frank, I. Müllerová, Scanning 9999, 1 (2016)

    Google Scholar 

  5. N.F. Mott, Proc. R. Soc. Lond. Ser. 124, 425 (1929)

    Google Scholar 

  6. R.H. Ritchie, Phys. Rev. 106, 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  8. J.P. Ganachaud, A. Mokrani, Surf. Sci. 334, 329 (1995)

    Article  ADS  Google Scholar 

  9. M. Dapor, Phys. Rev. B 46, 618 (1992)

    Article  ADS  Google Scholar 

  10. P. Sigmund, Particle Penetration and Radiation Effects (Springer, Berlin, 2006)

    Book  Google Scholar 

  11. R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977)

    Article  ADS  Google Scholar 

  12. H. Ibach, Electron Spectroscopy for Surface Analysis (Springer, Berlin, 1977)

    Book  Google Scholar 

  13. P.M. Echenique, R.H. Ritchie, N. Barberan, J. Inkson, Phys. Rev. B 23, 6486 (1981)

    Article  ADS  Google Scholar 

  14. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1982)

    Google Scholar 

  15. D.L. Mills, Phys. Rev. B 34, 6099 (1986)

    Article  ADS  Google Scholar 

  16. D.R. Penn, Phys. Rev. B 35, 482 (1987)

    Article  ADS  Google Scholar 

  17. J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 46, 199 (1988)

    Article  Google Scholar 

  18. F. Yubero, S. Tougaard, Phys. Rev. B 46, 2486 (1992)

    Google Scholar 

  19. Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)

    Article  ADS  Google Scholar 

  20. Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005)

    Article  ADS  Google Scholar 

  21. A. Cohen-Simonsen, F. Yubero, S. Tougaard, Phys. Rev. B 56, 1612 (1997)

    Article  ADS  Google Scholar 

  22. Z.-J. Ding, J. Phys. Condens. Matter 10, 1733 (1988)

    Article  ADS  Google Scholar 

  23. Z.-J. Ding, R. Shimizu, Phys. Rev. B 61, 14128 (2000)

    Article  ADS  Google Scholar 

  24. Z.-J. Ding, H.M. Li, Q.R. Pu, Z.M. Zhang, R. Shimizu, Phys. Rev. B 66, 085411 (2002)

    Article  ADS  Google Scholar 

  25. W.S.M. Werner, W. Smekal, C. Tomastik, H. Störi, Surf. Sci. 486, L461 (2001)

    Article  ADS  Google Scholar 

  26. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. (Springer, New York, 2011)

    Book  Google Scholar 

  27. R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Nucl. Instrum. Methods Phys. Res. B 249, 6 (2006)

    Article  ADS  Google Scholar 

  28. R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009)

    Article  ADS  Google Scholar 

  29. S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Phys. Rev. B 79, 085432 (2009)

    Article  ADS  Google Scholar 

  30. S. Taioli, S. Simonucci, M. Dapor, Comput. Sci. Discovery 2, 015002 (2009)

    Google Scholar 

  31. S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Phys. Rep. 493, 237 (2010)

    Article  ADS  Google Scholar 

  32. G. Gergely, Progr. Surf. Sci. 71, 31 (2002)

    Google Scholar 

  33. A. Jablonski, Progr. Surf. Sci. 74, 357 (2003)

    Google Scholar 

  34. D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, G. Gergely, A. Sulyok, Surf. Interface Anal. 31, 1019 (2001)

    Google Scholar 

  35. A. Sulyok, G. Gergely, M. Menyhard, J. Tóth, D. Varga, L. Kövér, Z. Berènyi, B. Lesiak, A. Jablonski, Vacuum 63, 371 (2001)

    Article  ADS  Google Scholar 

  36. G.T. Orosz, G. Gergely, M. Menyhard, J. Tóth, D. Varga, B. Lesiak, A. Jablonski, Surf. Sci. 566–568, 544 (2004)

    Article  ADS  Google Scholar 

  37. F. Yubero, V.J. Rico, J.P. Espinós, J. Cotrino, A.R. González-Elipe, Appl. Phys. Lett. 87, 084101 (2005)

    Article  ADS  Google Scholar 

  38. V.J. Rico, F. Yubero, J.P. Espinós, J. Cotrino, A.R. González-Elipe, D. Garg, S. Henry, Diam. Relat. Mater. 16, 107 (2007)

    Article  ADS  Google Scholar 

  39. D. Varga, K. Tökési, Z. Berènyi, J. Tóth, L. Kövér, Surf. Interface Anal. 38, 544 (2006)

    Article  Google Scholar 

  40. M. Filippi, L. Calliari, Surf. Interface Anal. 40, 1469 (2008)

    Article  Google Scholar 

  41. M. Filippi, L. Calliari, C. Verona, G. Verona-Rinati, Surf. Sci. 603, 2082 (2009)

    Article  ADS  Google Scholar 

  42. P. Auger, P. Ehrenfest, R. Maze, J. Daudin, R.A. Fréon, Rev. Modern Phys. 11, 288 (1939)

    Article  ADS  Google Scholar 

  43. L. Meitner, Z. Phys. 17, 54 (1923)

    Article  ADS  Google Scholar 

  44. G. Wentzel, Z. Phys. 43, 524 (1927)

    Article  ADS  Google Scholar 

  45. M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, S. Gialanella, Nucl. Instrum. Methods Phys. Res. B 269, 1672 (2011)

    Article  ADS  Google Scholar 

  46. M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, M. Crivellari, S. Gialanella, Surf. Interface Anal. 45, 677 (2013)

    Article  Google Scholar 

  47. M. Dapor, L. Calliari, G. Scarduelli, Nucl. Instrum. Methods Phys. Res. B 269, 1675 (2011)

    Article  ADS  Google Scholar 

  48. M. Dapor, L. Calliari, S. Fanchenko, Surf. Interface Anal. 44, 1110 (2012)

    Article  Google Scholar 

  49. M. Dapor, M. Ciappa, W. Fichtner, J. Micro/Nanolith, MEMS MOEMS 9, 023001 (2010)

    Google Scholar 

  50. M. Ciappa, A. Koschik, M. Dapor, W. Fichtner, Microelectr. Reliab. 50, 1407 (2010)

    Article  Google Scholar 

  51. A. Koschik, M. Ciappa, S. Holzer, M. Dapor, W. Fichtner, Proc. SPIE 7729, 77290X–1 (2010)

    Article  ADS  Google Scholar 

  52. M. Dapor, M.A.E. Jepson, B.J. Inkson, C. Rodenburg, Microsc. Microanal. 15, 237 (2009)

    Article  ADS  Google Scholar 

  53. C. Rodenburg, M.A.E. Jepson, E.G.T. Bosch, M. Dapor, Ultramicroscopy 110, 1185 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Dapor .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dapor, M. (2020). Electron Transport in Solids. In: Transport of Energetic Electrons in Solids. Springer Tracts in Modern Physics, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-43264-5_1

Download citation

Publish with us

Policies and ethics