Skip to main content

Wear of Rubbers and Its Control in Conveyer Belt System

  • Chapter
  • First Online:
Surface Engineering of Modern Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Rubbers are polymer materials characterized by the ability of reversible deformation under influence of external deformation forces, described as a material with elastic properties. Rubbers include natural rubber, naturally occurring substance and synthetic rubber, artificially derived from petrochemical product. Products made from rubber have flexible and stable 3-dimensional chemical structure and the ability to stretch repeatedly of about twice the original length and return to original length. These materials are enormously used in conveyer belt system. Today, rubber materials are altered with approximately 60% synthetic polymers to achieve desired properties of final product. This chapter investigates the wear of different types of rubbers against ceramic liners which is the most realistic case in mining industries, where conveyor belts are used for ore transportation pulleys in conveyer belt system are coated with sacrificial liners of ceramics and rubbers to prolong the life of the conveyor system. However, such pulley liners are exposed to wear and even chemical reactions particularly in mining industries that are involved in transporting ores. The investigation will provide information on surface in terms of wear mechanism of rubber against ceramics, wear rate and appearance of wear surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yernberg, W.: Conveying and materials handling. Min. Eng. 60(9), 39–40 (2008)

    Google Scholar 

  2. Finch, J.A.: Preface. In: Wills’ Mineral Processing Technology, 8th edn. p. xi. Butterworth-Heinemann, Boston (2016)

    Chapter  Google Scholar 

  3. Yardley, E.D.: Belt Conveying of Minerals. In: Stace, L.R. (ed.) Woodhead Publishing Series in Metals and Surface Engineering. Elsevier Science, Burlington (2008)

    Google Scholar 

  4. Hakami, F., Pramanik, A., Basak, A.K., Ridgway, N.: Elastomers’ wear: comparison of theory with experiment. Tribol. Int. 135, 46–54 (2019)

    Article  Google Scholar 

  5. Kalina, D.: Rubber chemistry. In http://laroverket.com/wp-content/uploads/2015/03/rubber_chemistry.pdf (2007)

  6. Intharapat, P., Nakason, C., Kongnoo, A.: Preparation of boric acid supported natural rubber as a reactive flame retardant and its properties. Polym. Degrad. Stab. 128, 217–227 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.03.004

    Article  CAS  Google Scholar 

  7. Arayapranee, Wanvimon. 2012. Rubber Abrasion Resistance Edited by Marcin Adamiak: InTech

    Google Scholar 

  8. Hakami, F., Pramanik, A., Basak, A.K., Ridgway, N., Islam, M.N.: Effect of abrasive particle size on tribological behavior of elastomers. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.:1350650119864486 (2019)

    Google Scholar 

  9. Hakami, F., Pramanik, A., Islam, N., Basak, A., Ridgway, N.: Study of effective parameters on wear behavior of rubbers based on statistical methods. Polym. Adv. Technol. 30(6), 1415–1426 (2019)

    Article  CAS  Google Scholar 

  10. Shaffer, S.J. Tribology 101—introduction to the basics of tribology. Bruker TMT. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis/TMT/Webinars/Tribology_101_Webinar-1_Intro_and_Basics_29-Jan-2013.pdf (2013). Accessed Oct 27 2013

  11. Stachowiak, G.W., Batchelor, A.W.: 2—physical properties of lubricants. In: Engineering Tribology, 3rd edn., pp. 11–50. Butterworth-Heinemann, Burlington (2006)

    Chapter  Google Scholar 

  12. Sethuramiah, A., Kumar, R.: Chapter 1—tribology in perspective. In: Modeling of Chemical Wear, pp. 1–23. Elsevier, Oxford (2016)

    Google Scholar 

  13. Mang, T.: Industrial Tribology: Tribosystems, Wear and Surface Engineering, Lubrication. In: Bobzin, K., Bartels, T. (eds.). Wiley-VCH, Weinheim (2010)

    Google Scholar 

  14. McKeen, L.W.: 2—Introduction to the tribology of plastics and elastomers. In: Fatigue and Tribological Properties of Plastics and Elastomers, 3rd edn. pp. 27–44. William Andrew Publishing (2016)

    Google Scholar 

  15. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. In: [S.l] Butterworth-Heinemann. http://link.lis.curtin.edu.au/cgi-bin/gw?, http://www.sciencedirect.com/science/book/9780123970473 (2013)

  16. Mang, T., Bobzin, K., Bartels, T.: Introduction. In: Industrial Tribology, pp. 1–7. Wiley-VCH Verlag GmbH & Co. KGaA (2010)

    Google Scholar 

  17. Adachi, K., Hutchings, I.M.: Wear-mode mapping for the micro-scale abrasion test. Wear 255(1–6), 23–29 (2003). https://doi.org/10.1016/S0043-1648(03)00073-5

    Article  CAS  Google Scholar 

  18. Kato, K., Adachi, K.: Modern Tribology Handbook. 2 vols, vol. 1 (2001)

    Google Scholar 

  19. Trezona, R.I., Allsopp, D.N., Hutchings, I.M.: Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear 225, 205–214 (1999). https://doi.org/10.1016/S0043-1648(98)00358-5

    Article  Google Scholar 

  20. Ferreira, H., Leite, M.G.P.: A life cycle assessment study of iron ore mining. J Clean Prod 108, Part A, 1081–1091 (2015). http://dx.doi.org/10.1016/j.jclepro.2015.05.140

    Article  Google Scholar 

  21. Roumpos, C., Partsinevelos, P., Agioutantis, Z., Makantasis, K., Vlachou, A.: The optimal location of the distribution point of the belt conveyor system in continuous surface mining operations. Simul. Model. Pract. Theory 47, 19–27 (2014). https://doi.org/10.1016/j.simpat.2014.04.006

    Article  Google Scholar 

  22. Hou, Y., Xie, F., Huang, F.: Control strategy of disc braking systems for downward belt conveyors. Min. Sci. Technol. (China) 21(4), 491–494 (2011). https://doi.org/10.1016/j.mstc.2011.06.005

    Article  Google Scholar 

  23. Fedorko, G., Molnar, V., Marasova, D., Grincova, A., Dovica, M., Zivcak, J., Toth, T., Husakova, N.: Failure analysis of belt conveyor damage caused by the falling material. Part II: application of computer metrotomography. Eng. Fail. Anal. 34, 431–442 (2013). https://doi.org/10.1016/j.engfailanal.2013.09.016

    Article  Google Scholar 

  24. Zeng, F., Qing, W., Chu, X., Yue, Z.: Measurement of bulk material flow based on laser scanning technology for the energy efficiency improvement of belt conveyors. Measurement 75, 230–243 (2015). https://doi.org/10.1016/j.measurement.2015.05.041

    Article  Google Scholar 

  25. Molnar, W., Varga, M., Braun, P., Adam, K., Badisch, E.: Correlation of rubber based conveyor belt properties and abrasive wear rates under 2- and 3-body conditions. Wear 320, 1–6 (2014). https://doi.org/10.1016/j.wear.2014.08.007

    Article  CAS  Google Scholar 

  26. Brook, Norman. 1990. Mine Winding and Transport (Book Review)

    Google Scholar 

  27. Chandrasekaran, V.C.: 10—Beltings—transmission, conveyor, and v-belts. In: Essential Rubber Formulary, pp. 44–50. William Andrew Publishing, Norwich, NY (2007)

    Chapter  Google Scholar 

  28. Commerce, Balkan Consult.: Rubber Conveyor Belts: Types of Conveyor Belts (2016)

    Google Scholar 

  29. Hossein, N., Saeed, C.C., Stichel, S.: Prediction of RCF and wear evolution of iron-ore locomotive wheels. Wear 338–339, 62–72 (2015). https://doi.org/10.1016/j.wear.2015.05.015

    Article  CAS  Google Scholar 

  30. Chowdhury, M.A., Khalil, M.K., Nuruzzaman, D.M., Rahaman, M.L.: The effect of sliding speed and normal load on friction and wear property of aluminum. Int J Mech Mech Eng 11(01), 45–49 (2011)

    Google Scholar 

  31. Fedorko, G., Molnar, V., Marasova, D., Grincova, A., Dovica, M., Zivcak, J., Toth, T., Husakova, N.: Failure analysis of belt conveyor damage caused by the falling material. Part I: experimental measurements and regression models. Eng. Fail. Anal. 36, 30–38 (2014). https://doi.org/10.1016/j.engfailanal.2013.09.017

    Article  Google Scholar 

  32. Hernandez, S., Leiro, A., Ripoll, M.R., Vuorinen, E., Sundin, K.-G., Prakash, B.: High temperature three-body abrasive wear of 0.25C 1.42Si steel with carbide free bainitic (CFB) and martensitic microstructures. Wear 360–361, 21–28 (2016). https://doi.org/10.1016/j.wear.2016.04.012

    Article  CAS  Google Scholar 

  33. Gangadia, H., Sheth, S., Chauhan, P.: Design and modeling of special purpose equipment for shell-diaphragm welding in conveyor pulley. Proc. Technol. 14, 497–504 (2014). https://doi.org/10.1016/j.protcy.2014.08.063

    Article  Google Scholar 

  34. Ravikumar, M., Chattopadhyay, A.: Integral analysis of conveyor pulley using finite element method. Comput. Struct. 71(3), 303–332 (1999). https://doi.org/10.1016/S0045-7949(98)00145-X

    Article  Google Scholar 

  35. Chowdhury, S., Yedavalli, R.K.: Dynamics of belt-pulley-shaft systems. Mech. Mach. Theor. 98, 199–215 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.11.011

    Article  Google Scholar 

  36. Yardley, E.D., Stace, L.R.: 4—Design of belt conveyors 2—hardware (Idlers, structure, pulleys, drives, tensioning devices, transfer points and belt cleaning). In: Belt Conveying of Minerals, pp. 44–70. Woodhead Publishing (2008)

    Google Scholar 

  37. PCI. Conveyor Pulley Selection Guide (2014)

    Google Scholar 

  38. Molnar, W., Nugent, S., Lindroos, M., Apostol, M., Varga, M.: Ballistic and numerical simulation of impacting goods on conveyor belt rubber. Polym. Testing 42, 1–7 (2015). https://doi.org/10.1016/j.polymertesting.2014.12.001

    Article  CAS  Google Scholar 

  39. Reibbelagtechnik, STS Friction.: Ceramic pulley linings for belt conveyor systems. Moeschter Group (2008)

    Google Scholar 

  40. Beninga, D.H.: Ceramic-rubber composites. Edited by 607 US Patent 3, 606: Coors Porcelain Company (1971)

    Google Scholar 

  41. Suginaka, M. Lagging body for belt conveyor pulley. Google Patents (1981)

    Google Scholar 

  42. Mark, J.E.: The Science and Technology of Rubber. In: Erman, B., Roland, M. (eds.) Science and Technology of Rubber, 4th edn. Elsevier Science, Burlington (2013)

    Google Scholar 

  43. bin Samsuri, A.: 3.33—Degradation of natural rubber and synthetic elastomers A2—Cottis, Bob. In: Graham, M., Lindsay. R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H. (eds.) Shreir’s Corrosion, pp. 2407–2438. Elsevier, Oxford (2010)

    Google Scholar 

  44. Gent, A.N.: Chapter 1—rubber elasticity: basic concepts and behavior. In: The science and technology of rubber, 4th edn., pp. 1–26. Academic Press, Boston (2013)

    Google Scholar 

  45. Saritha, A., Joseph, K.: Effect of nano clay on the constrained polymer volume of chlorobutyl rubber nanocomposites. Polym. Compos. 36(11), 2135–2139 (2015). https://doi.org/10.1002/pc.23124

    Article  CAS  Google Scholar 

  46. Zhang, H., Deng, J.X., Lian, Y.S.: Friction and wear behaviors of Al2O3 based ceramic tool materials at temperatures up to 800 °C. Appl. Mech. Mater. 148–149:908. http://dx.doi.org/10.4028/www.scientific.net/AMM.148-149.908 (2011)

  47. Carter, C.B., Grant Norton, M.: Ceramic materials: science and engineering. In: Grant Norton, M., SpringerLink (eds.), 2nd edn. Springer, New York, NY (2013)

    Google Scholar 

  48. Olofsson, J.: Friction and Wear Mechanisms of Ceramic Surfaces, Uppsala University (2011)

    Google Scholar 

  49. Wachtman, J.B.: Mechanical properties of ceramics. In: Roger Cannon, W., John Matthewson, M., InterScience Wiley (eds.) 2nd edn. Wiley, Hoboken, N.J. (2009)

    Google Scholar 

  50. Shackelford, J.F., Doremus, R.H.: Ceramic and Glass Materials (2008)

    Google Scholar 

  51. Figiel, P., Rozmus, M., Smuk, B.: Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics 48(1) (2011)

    Google Scholar 

  52. Bansal, P., Upadhyay, L.: Effect of turning parameters on tool wear, surface roughness and metal removal rate of alumina reinforced aluminum composite. Proc. Technol. 23, 304–310 (2016). https://doi.org/10.1016/j.protcy.2016.03.031

    Article  Google Scholar 

  53. Shackelford, J.F.: Ceramic and Glass Materials: Structure, Properties and Processing. In: Doremus, R.H., SpringerLink (eds.). Springer US, Boston, MA (2008)

    Google Scholar 

  54. Auerkari, P.: Mechanical and physical properties of engineering alumina ceramics. Technical Research Centre of Finland ESPOO 1996 (1996)

    Google Scholar 

  55. Schimmoller, B.: Ceramic lagging cures belt slippage ills. Power Eng. 106(10), 29–37 (2002)

    Google Scholar 

  56. Pomeroy, M.J.: Ceramic materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier (2016)

    Google Scholar 

  57. Kennedy, D.M., Hashmi, M.S.J.: Methods of wear testing for advanced surface coatings and bulk materials. J. Mater. Process. Technol. 77(1–3), 246–253 (1998). https://doi.org/10.1016/S0924-0136(97)00424-X

    Article  Google Scholar 

  58. Doering, A., Danks, D., Mahmoud, S., Scott, J.: Evaluation of ASTM G65 abrasive—Spanning 13 years of sand. Wear 271(9–10), 1252–1257 (2011). http://dx.doi.org/10.1016/j.wear.2011.01.051

    Article  CAS  Google Scholar 

  59. Yanes, R.E., Hernandez, L.N., Morera, O.Z., Olivier, N.C., Neto, A.F.: Design and fabrication of a machine for test in abrasive wearing according to ASTM G65 standard. Am. J. Mater. Sci. Appl. 2(5), 86–90 (2014)

    Google Scholar 

  60. International, ASTM.: Standard test method for measuring abrasion using the dry sand/rubber wheel apparatus (2010)

    Google Scholar 

  61. Tangudom, P., Thongsang, S., Sombatsompop, N.: Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene–butadiene rubber and their blends reinforced with silica hybrid fillers. Mater. Des. 53, 856–864 (2014). https://doi.org/10.1016/j.matdes.2013.07.024

    Article  CAS  Google Scholar 

  62. Hakami, F., Pramanik, A., Ridgway, N., Basak, A.K.: Developments of rubber material wear in conveyer belt system. Tribol. Int. 111:148–158 (2017)

    Article  Google Scholar 

  63. ExxonMobil. Butyl Rubber. Accessed 5 May. http://www.exxonmobilchemical.com/Chem-English/brands/butyl-rubber-exxon-chlorobutyl.aspx?ln=productsservices

  64. Roulunds. Conveyor Belt. Accessed 6 May 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masrangi, D.T., Salim, H., Hakami, F., Pramanik, A., Basak, A.K. (2020). Wear of Rubbers and Its Control in Conveyer Belt System. In: Gupta, K. (eds) Surface Engineering of Modern Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43232-4_3

Download citation

Publish with us

Policies and ethics