Skip to main content

Friction Stir Processing: An Emerging Surface Engineering Technique

  • Chapter
  • First Online:
Surface Engineering of Modern Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Surface modification technologies impart improved surface properties without affecting the bulk properties of the material. The properties could be mechanical, electrical or thermal properties. Until recent past, thermal spray techniques, namely, plasma spraying, high-velocity oxy-fuel coatings and many others widely used for these applications. Friction stir processing (FSP) is a relatively newer technique that uses friction (between two surfaces) as a heat source to form a surface composite on the base alloy. This solid-state process not only refines the given structure but also disperses the reinforcements well within matrix alloy to enhance the surface properties. FSP was earlier employed to low melting point alloys such as aluminum and magnesium-base alloys, but now, with the recent development in tool geometry and tool materials, it can even be effectively used for high melting point alloys like steel and titanium-based alloys. Several process parameters seem to affect temperature and dispersion of reinforcements at the surface. They include rotational speed and traverse speed of the tool, number of passes, cooling medium and the tool geometry. Among these, rotation speed and traversing speed of tool seem to greatly affect the temperature distribution in the plasticized zone formed at the surface. This temperature, in turn, affects the grain refinement and dispersion of reinforcement particles. The present chapter summarizes the effect of these parameters. This chapter also reviews the latest developments in the tool material and its design. Further, their role in augmenting the base alloy properties is also discussed. High hardness, high fracture toughness, chemical inertness and high-temperature strength are few desirable properties of a tool to be used for FSP. In the end, the applicability of FSP as a surface modification technique has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASM Handbook Volume 5: Surface Engineering. ASM International (1994)

    Google Scholar 

  2. Jambagi, S.C.: Property Improvement of Thermally Sprayed Coatings Using Carbon Nanotube Reinforcement. Indian Institute of Technology, Kharagpur (2017)

    Google Scholar 

  3. Jambagi, S.C.: Scratch adhesion strength of plasma sprayed carbon nanotube reinforced ceramic coatings. J. Alloys Compd. 728, 126–137 (2017)

    Article  CAS  Google Scholar 

  4. Jambagi, S.C., Kar, S., Brodard, P., Bandyopadhyay, P.P.: Characteristics of plasma sprayed coatings produced from carbon nanotube doped ceramic powder feedstock. Mater. Des. 112, 392–401 (2016)

    Article  CAS  Google Scholar 

  5. Majumdar, J.D.: thermal and cold spraying technology in manufacturing. In: Handbook of Manufacturing Engineering and Technology, pp. 2805–2850. Springer, London (2014)

    Google Scholar 

  6. Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I.: Industrial applications of thermal spraying technology. In: Thermal Spray Fundamentals: From Powder to Part, pp. 1401–1566. Springer (2014)

    Google Scholar 

  7. Jambagi, S.C., Bandyopadhyay, P.P.: Plasma sprayed carbon nanotube reinforced splats and coatings. J. Eur. Ceram. Soc. 37(5), 2235–2244 (2017)

    Article  CAS  Google Scholar 

  8. Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings, 2nd edn. Wiley (2008)

    Google Scholar 

  9. Fauchais, P.: Current status and future directions of thermal spray coatings and techniques. In: Future Development of Thermal Spray Coatings, Woodhead Publishing, pp. 17–49 (2015)

    Chapter  Google Scholar 

  10. Budinski, K.G.: Surface Engineering for Wear Resistance. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, United States (1988)

    Google Scholar 

  11. Verdon, C., Karimi, A., Martin, J.-L.: A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Mater. Sci. Eng., A 246(1–2), 11–24 (1998)

    Article  Google Scholar 

  12. Kuroda, S., Kawakita, J., Watanabe, M., Katanoda, H.: Warm spraying—a novel coating process based on high-velocity impact of solid particles. Sci. Technol. Adv. Mater. 9(3), 33002 (2008)

    Article  CAS  Google Scholar 

  13. Ann Gan, J., Berndt, C.C.: Thermal spray forming of titanium and its alloys. In: Titanium Powder Metallurgy, pp. 425–446. Butterworth-Heinemann (2015)

    Google Scholar 

  14. Heimann, R.B.: Applications of plasma-sprayed ceramic coatings. Key Eng. Mater. 122–124, 399–442 (1996)

    Article  Google Scholar 

  15. Jambagi, S.C., Sarkar, N., Bandyopadhyay, P.P.: Preparation of carbon nanotube doped ceramic powders for plasma spraying using heterocoagulation method. J. Eur. Ceram. Soc. 35(3), 989–1000 (2015)

    Article  CAS  Google Scholar 

  16. Jambagi, S.C., Agarwal, A., Sarkar, N., Bandyopadhyay, P.P.: Plasma-sprayed titania and alumina coatings obtained from feedstocks prepared by heterocoagulation with 1 wt.% carbon nanotube. J. Mater. Eng. Perform. 27(5), 2364–2372 (2018)

    Article  CAS  Google Scholar 

  17. Dorfman, M.R.: Thermal spray coatings. Handb. Environ. Degrad. Mater., 469–488 (2018)

    Google Scholar 

  18. Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K.: High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 42(2), 163–168 (1999)

    Article  Google Scholar 

  19. Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Reports 50(1–2), 1–78 (2005)

    Article  CAS  Google Scholar 

  20. Ma, Z.Y.: Friction stir processing technology: a review. Metall. Mater. Trans. A 39(3), 642–658 (2008)

    Article  CAS  Google Scholar 

  21. Bajakke, P.A., Malik, V.R., Deshpande, A.S.: Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater. Manuf. Process. 34(8), 833–881 (2019)

    Article  CAS  Google Scholar 

  22. Farias, A., Batalha, G.F., Prados, E.F., Magnabosco, R., Delijaicov, S.: Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V. Wear 302(1–2), 1327–1333 (2013)

    Article  CAS  Google Scholar 

  23. Padhy, G.K., Wu, C.S., Gao, S.: Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J. Mater. Sci. Technol. 34, 1–38 (2017)

    Article  Google Scholar 

  24. Gandra, J., Pereira, D., Miranda, R.M., Vilaça, P.: Influence of process parameters in the friction surfacing of AA 6082–T6 over AA 2024–T3. Procedia CIRP 7, 341–346 (2013)

    Article  Google Scholar 

  25. Yu, M., Zhang, Z., Zhao, H., Zhou, L., Song, X.: Microstructure and corrosion behavior of the ultra-fine grained aluminum coating fabricated by friction surfacing. Mater. Lett. 250, 174–177 (2019)

    Article  CAS  Google Scholar 

  26. Liu, S., Bor, T.C., Van Der Stelt, A.A., Geijselaers, H.J.M., Kwakernaak, C., Kooijman, A.M., Mol, J.M.C., Akkerman, R., Van Den Boogaard, A.H.: Friction surface cladding: an exploratory study of a new solid state cladding process. J. Mater. Process. Tech. 229, 769–784 (2016)

    Article  CAS  Google Scholar 

  27. Van Der Stelt, A.A., Bor, T.C., Geijselaers, H.J.M., Akkerman, R., Van Den Boogaard, A.H.: Cladding of Advanced Al Alloys Employing Friction Stir Welding, vol. 554–557, pp. 1014–1021 (2013)

    Google Scholar 

  28. Khodabakhshi, F., Marzbanrad, B., Shah, L.H., Jahed, H., Gerlich, A.P.: Surface modification of a cold gas dynamic spray-deposited titanium coating on aluminum alloy by using friction-stir processing. J. Therm. Spray Technol. 28(6), 1185–1198 (2019)

    Article  CAS  Google Scholar 

  29. Rani, M., Perumal, G., Roy, M., Grewal, H.S., Singh, H., Arora, H.S.: Post-processing of Ni–Cr–Al2O3 Thermal spray coatings through friction stir processing for enhanced erosion–corrosion performance. J. Therm. Spray Technol., pp. 1–12 (2019)

    Google Scholar 

  30. Mane, K.M., Hosmani, S.S.: Friction stir surface processing of Al 6061 alloy: role of surface alloying with copper and heat-treatment. Trans. Indian Inst. Met. 71(6), 1411–1425 (2018)

    Article  CAS  Google Scholar 

  31. Rao, K.P., Sankar, A., Rafi, H.K., Ram, G.D.J., Reddy, G.M.: Friction surfacing on nonferrous substrates: a feasibility study. Int. J. Adv. Manuf. Technol. 65(5–8), 755–762 (2013)

    Article  Google Scholar 

  32. George Sahaya Nixon, R., Mohanty, B.S., Sathish, R.: Friction surfacing of AISI 316 over mild steel: a characterisation study. Def. Technol. 14(4), 306–312 (2018)

    Google Scholar 

  33. Nixon, R.G.S., Mohanty, B.S., Bhaskar, G.B.: Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24 in friction surfacing. Mater. Manuf. Process. 33(7), 778–785 (2018)

    Article  CAS  Google Scholar 

  34. Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K., Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)

    Article  CAS  Google Scholar 

  35. Asadi, P., Faraji, G., Masoumi, A., Givi, M.K.B.: Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(9), 2820–2832 (2011)

    Article  CAS  Google Scholar 

  36. Cartigueyen, S., Mahadevan, K.: Wear characteristics of copper-based surface-level microcomposites and nanocomposites prepared by friction stir processing. Friction 4(1), 39–49 (2016)

    Article  CAS  Google Scholar 

  37. Salekrostam, R., Besharati Givi, M.K., Asadi, P., Bahemmat, P.: Influence of friction stir processing parameters on the fabrication of SiC/316L surface composite. Defect Diffus. Forum 297–301, 221–226 (2010)

    Article  CAS  Google Scholar 

  38. Shamsipur, A., Kashani-Bozorg, S.F., Zarei-Hanzaki, A.: The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf. Coatings Technol. 206(6), 1372–1381 (2011)

    Article  CAS  Google Scholar 

  39. Parumandla, N., Adepu, K.: Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nano composite by friction stir processing. Part. Sci. Technol., 1–10 (2018)

    Google Scholar 

  40. Suvarna Raju, L., Kumar, A.: Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Def. Technol. 10(4), 375–383 (2014)

    Article  Google Scholar 

  41. Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S.F., Moshref-Javadi, M., Sharififar, M.: Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallogr. Microstruct. Anal. 4(2), 122–130 (2015)

    Article  CAS  Google Scholar 

  42. Shafiei-Zarghani, A., Kashani-Bozorg, S.F., Gerlich, A.P.: Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Mater. Sci. Eng., A 631, 75–85 (2015)

    Article  CAS  Google Scholar 

  43. Liu, Q., Ke, L., Liu, F., Huang, C., Xing, L.: Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des. 45, 343–348 (2013)

    Article  CAS  Google Scholar 

  44. Soltani, M., Shamanian, M., Niroumand, B.: Surface characteristics improvement of AZ31B magnesium by surface compositing with carbon nano-tubes through friction stir processing. Int. J. Adv. Des. Manuf. Technol. 8(1), 85–95 (2015)

    Google Scholar 

  45. Chen, W.L., Huang, C.P., Ke, L.M.: A novel way to fabricate carbon nanotubes reinforced copper matrix composites by friction stir processing. Adv. Mater. Res. 391–392, 524–529 (2011)

    Article  CAS  Google Scholar 

  46. Mahmoud, E.R.I., Al-qozaim, A.M.A.: Fabrication of in-situ Al–Cu intermetallics on aluminum surface by friction stir processing. Arab. J. Sci. Eng. 41(5), 1757–1769 (2016)

    Article  CAS  Google Scholar 

  47. Azizieh, M., Mazaheri, M., Balak, Z., Kafashan, H., Kim, H.S.: Fabrication of Mg/Al12Mg17 in-situ surface nanocomposite via friction stir processing. Mater. Sci. Eng., A 712, 655–662 (2018)

    Article  CAS  Google Scholar 

  48. Li, B., Shen, Y., Lei, L., Hu, W.: Fabrication and evaluation of Ti3Alp/Ti–6Al–4V surface layer via additive friction-stir processing. Mater. Manuf. Process. 29(4), 412–417 (2014)

    Article  CAS  Google Scholar 

  49. Akbari, M., Shojaeefard, M.H., Asadi, P., Khalkhali, A.: Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 1–10 (2017)

    Google Scholar 

  50. Dixit, M., Newkirk, J.W., Mishra, R.S.: Properties of friction stir-processed Al 1100-NiTi composite. Scr. Mater. 56(6), 541–544 (2007)

    Article  CAS  Google Scholar 

  51. Janbozorgi, M., Shamanian, M., Sadeghian, M., Sepehrinia, P.: Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles. Trans. Nonferrous Met. Soc. China 27(2), 298–304 (2017

    Article  CAS  Google Scholar 

  52. Prakash, T., Sivasankaran, S., Sasikumar, P.: Mechanical and tribological behaviour of friction-stir-processed al 6061 aluminium sheet metal reinforced with Al2O3/0.5 Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. 40(2), 559–569 (2014)

    Article  CAS  Google Scholar 

  53. Malik, V., Kailas, S.V.: Plasticine modeling of material mixing in friction stir welding. J. Mater. Process. Technol. 258, 80–88 (2018)

    Article  CAS  Google Scholar 

  54. Thomas, W.M., Johnson, K.I., Wiesner, C.S.: Friction stir welding-recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)

    Article  Google Scholar 

  55. Arab, S.M., Zebarjad, S.M., Jahromi, S.A.J.: Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: investigation of microstructure and mechanical properties. J. Mater. Eng. Perform. 26(11), 5366–5374 (2017)

    Article  CAS  Google Scholar 

  56. Ahmadifard, S., Kazemi, S., Momeni, A.: A356/TiO2 nanocomposite fabricated by friction stir processing: microstructure, mechanical properties and tribologic behavior. JOM (2018)

    Google Scholar 

  57. Faraji, G., Dastani, O., Akbari Mousavi, S.A.A.: Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225(8), 1331–1345 (2011)

    Google Scholar 

  58. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K.: Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci. Technol. Weld. Join. 14(5), 413–425 (2009)

    Article  CAS  Google Scholar 

  59. Morisada, Y., Fujii, H., Nagaoka, T., Fukusumi, M.: Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules. Scr. Mater. 55(11), 1067–1070 (2006)

    Article  CAS  Google Scholar 

  60. Asadi, P., Faraji, G., Besharati, M.K.: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51(1–4), 247–260 (2010)

    Article  Google Scholar 

  61. Asadi, P., Givi, M.K.B., Abrinia, K., Taherishargh, M., Salekrostam, R.: Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. J. Mater. Eng. Perform. 20(9), 1554–1562 (2011)

    Article  CAS  Google Scholar 

  62. Barmouz, M., Asadi, P., Besharati Givi, M.K., Taherishargh, M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A 528(3), 1740–1749 (2011)

    Article  CAS  Google Scholar 

  63. Agrawal, A.K., Narayanan, R.G., Kailas, S.V.: End forming behaviour of friction stir processed Al 6063-T6 tubes at different tool rotational speeds. J. Strain Anal. Eng. Des. 52(7), 434–449 (2017)

    Article  Google Scholar 

  64. Mehta, K.P., Badheka, V.J.: Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater. Manuf. Process. 31(3), 255–263 (2016)

    Article  CAS  Google Scholar 

  65. Madhu, H.C., Ajay Kumar, P., Perugu, C.S., Kailas, S.V.: Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite. J. Mater. Eng. Perform. 27(3), 1318–1326 (2018)

    Article  CAS  Google Scholar 

  66. Nadammal, N., Kailas, S.V., Suwas, S.: A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy. Mater. Des. 65, 127–138 (2015)

    Article  CAS  Google Scholar 

  67. Ajay Kumar, P., Raj, R., Kailas, S.V.: A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater. Des. 85, 626–634 (2015)

    Google Scholar 

  68. Ajay Kumar, P., Yadav, D., Perugu, C.S., Kailas, S.V.: Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 113, 99–108 (2017)

    Google Scholar 

  69. Ajay Kumar, P.: Evolution of in-situ nano-pores during friction stir processing of polymer derived ceramic reinforced metal matrix composites. Res. Reports Met. (2017)

    Google Scholar 

  70. Pathak, S., Saha, G. C.: Sustainable development of cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: a critical review. Coatings 7(8), 122–149 (2017). https://doi.org/10.3390/coatings7080122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to KLS Gogte Institute of Technology, Belagavi, Karnataka, India, for setting up the Center of Excellence for Industrial Microwave Application in association with an industry partner—Enerzi Microwave Systems Private Limited, Belagavi, Karnataka, India. We are also thankful to the Minority Welfare Department, Directorate of Minorities, Government of Karnataka, India, for granting fellowship vide registration No. DOM/FELLOWSHIP/CR-15/2018-19 for pursuing Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak R. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajakke, P.A., Jambagi, S.C., Malik, V.R., Deshpande, A.S. (2020). Friction Stir Processing: An Emerging Surface Engineering Technique. In: Gupta, K. (eds) Surface Engineering of Modern Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43232-4_1

Download citation

Publish with us

Policies and ethics