Skip to main content

Exploiting Symmetries of Small Prime-Sized DFTs

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

Small prime-sized discrete Fourier transforms appear in various applications from quantum mechanics, material sciences and machine learning. The typical implementation of the discrete Fourier transform for such problem sizes is done as a cyclic convolution using algorithms like Rader or Bluestein. However, these approaches exhibit extra computation and expensive data movement. In this work, we present an alternative method by casting the Fourier transform as a direct symmetric matrix-vector multiplication. Exploiting the symmetries of the Fourier matrix and using knowledge from dense linear algebra, we present an implementation that reduces the amount of computation and requires less memory usage. We show that this approach achieves up to 2x performance gains on Intel and AMD architectures, compared to implementations offered by Intel MKL and FFTW that use Rader and Bluestein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluestein, L.: A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 18, 451–455 (1970)

    Google Scholar 

  2. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Google Scholar 

  3. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and Adaptation”

    Article  Google Scholar 

  4. Intel: Math Kernel Library (2018). http://developer.intel.com/software/products/mkl/

  5. Lebensohn, R.A., Kanjarla, A.K., Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32, 59–69 (2012)

    Google Scholar 

  6. Popovici, D., Franchetti, F., Low, T.M.: Mixed data layout kernels for vectorized complex arithmetic. In: 2017 IEEE High Performance Extreme Computing Conference, HPEC 2017 (2017)

    Google Scholar 

  7. Popovici, D.T., Russell, F.P., Wilkinson, K., Skylaris, C.K., Kelly, P.H., Franchetti, F.: Generating optimized Fourier interpolation routines for density functional theory using SPIRAL. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 743–752. IEEE (2015)

    Google Scholar 

  8. Rader, C.M.: Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968)

    Google Scholar 

  9. Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005)

    Google Scholar 

  10. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast convolutional nets with fbfft: A GPU performance evaluation. arXiv preprint arXiv:1412.7580 (2014)

  11. Veras, R., Popovici, D.T., Low, T.M., Franchetti, F.: Compilers, hands-off my hands-on optimizations. In: Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector Processing, WPMVP 2016, pp. 4:1–4:8 (2016). https://doi.org/10.1145/2870650.2870654

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru Thom Popovici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popovici, D.T., Parikh, D.N., Spampinato, D.G., Low, T.M. (2020). Exploiting Symmetries of Small Prime-Sized DFTs. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics