Skip to main content

Statistical Finite Element Analysis of the Mechanical Response of the Intact Human Femur Using a Wide Range of Individual Anatomies

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering (CMBBE 2019)

Abstract

This paper attempts to obtain an improved and more physiological distribution of the applied joint and muscle forces on the intact human femur and to gain an understanding of inter-subject variability on the mechanical response. A set of 109 CT-based femur models of individual anatomies were simulated using the Finite Element method during walking. Heterogeneous material properties, physiological boundary and loading conditions were applied to each femur model to form a reference initial load configuration [1]. To correct the imbalance in the force system, an optimisation scheme was adopted that iteratively updated the locations of both muscle and joint attachments across a 5-mm radius circle centred at the initially defined node in the reference load configuration [2, 3]. Across all patients, a 28–48% reduction in the resultant reaction force magnitude measured at the femoral head was achieved. A clear gender bias was present in terms of reaction forces and strains in both the initial and optimised models. The optimisation scheme mostly affected the medial-lateral component of the reaction force. The change in the average strain was found to be highly dependent upon the percentage reduction achieved in the optimisation process. This reduction was higher for males than females and is most likely due to size differences. Body weight and bone density highly influenced reaction forces and strains. Femoral anteversion linarly increased with reaction forces; other anatomical parameters such as neck length, neck offset, and functional femoral length or CCD angle did not have a clear influence on these forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Speirs, A.D., Heller, M.O., Duda, G.N., Taylor, W.R.: Physiologically based boundary conditions in finite element modelling. J. Biomech. 40(10), 2318–2323 (2007)

    Article  Google Scholar 

  2. Kepple, T.M., Arnold, A.S., Stanhope, S.J., Siegel, K.L.: Assessment of a method to estimate muscle attachments from surface landmarks: a 3D computer graphics approach. J. Biomech. 27(3), 365–371 (1994)

    Article  Google Scholar 

  3. Matias, R., Andrade, C., Veloso, A.P.: A transformation method to estimate muscle attachments based on three bony landmarks. J. Biomech. 42(3), 331–335 (2009)

    Article  Google Scholar 

  4. Taylor, M., Prendergast, P.J.: Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J. Biomech. 48(5), 767–778 (2015)

    Article  Google Scholar 

  5. Bah, M.T., Shi, J., Browne, M., Suchier, Y., Lefebvre, F., Young, P., Heller, M.O.: Exploring inter-subject anatomic variability using a population of patient-specific femurs and a statistical shape and intensity model. Med. Eng. Phys. 37(10), 995–1007 (2015)

    Article  Google Scholar 

  6. Bah, M.T., Shi, J., Heller, M.O., Suchier, Y., Lefebvre, F., Young, P., King, L., Dunlop, D.G., Boettcher, M., Draper, E., Browne, M.: Inter-subject variability effects on the primary stability of a short cementless femoral stem. J. Biomech. 48(6), 1032–1042 (2015)

    Article  Google Scholar 

  7. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N.: Hip contact forces and gait patterns from routine activites. J. Biomech. 34(7), 859–871 (2001)

    Article  Google Scholar 

  8. Trepczynski, A., Kutzner, I., Kornaropoulos, E., Taylor, W.R., Duda, G.N., Bergmann, G., Heller, M.O.: Patellofemoral joint contact forces during activities with high knee flexion. J. Orthop. Res. 30(3), 408–415 (2012)

    Article  Google Scholar 

  9. Pancanti, A., Bernakiewicz, M., Viceconti, M.: The primary stability of a cementless stem varies between subjects as much as between activities. J. Biomech. 36, 777–785 (2003)

    Article  Google Scholar 

  10. Taddei, F., Palmadori, I., Taylor, W.R., Heller, M.O., Bordini, B., Toni, A., Schileo, E.: Safety factor of the proximal femur during gait: a population-based finite element study. J. Biomech. 47(17), 3433–3440 (2014)

    Article  Google Scholar 

  11. Heller, M.O., Bergmann, G., Kassi, J.-P., Claes, L., Haas, N.P., Duda, G.N.: Determination of muscle loading at the hip joint for use in pre-clinical testing. J. Biomech. 38(5), 1115–1163 (2005)

    Article  Google Scholar 

  12. Duda, G.N., Heller, M., Albinger, J., Schulz, O., Schneider, E., Claes, L.: Influence of muscle forces on femoral strain distribution. J. Biomech. 31(9), 841–846 (1998)

    Article  Google Scholar 

  13. Kennedy, J.C., Hawkins, R.J., Willis, R.B., Danylchuck, K.D.: Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J. Bone Joint Surg. Am. 58(3), 350–355 (1976)

    Article  Google Scholar 

  14. Taylor, M.E., Tanner, K.E., Freeman, M.A., Yettram, A.L.: Stress and strain distribution within the intact femur: compression or bending? Med. Eng. Phys. 18(2), 122–131 (1996)

    Article  Google Scholar 

  15. Carbone, V., van der Krogt, M.M., Koopman, H.F.J.M., Verdonschot, N.: Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J. Biomech. 45(14), 2476–2480 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou T. Bah .

Editor information

Editors and Affiliations

Ethics declarations

All authors have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bah, M.T., Snorrason, R., Heller, M.O. (2020). Statistical Finite Element Analysis of the Mechanical Response of the Intact Human Femur Using a Wide Range of Individual Anatomies. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics