Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

There is a significant breakthrough in use of composite materials in modern technology, construction, mechanical engineering and electronics in the past decade. Such popularity takes place due to ability to achieve required (electro-)mechanical properties of the composite. Analyzing stresses, strains and electric displacements in the elements of mechanical or electromechanical structures, the most important issue is to determine stress and electric displacement concentrations near the defects or cracks, which are characterized by intensity factors (IFs). Based on the experimental investigations, fracture of composites is found to be primary caused by the cracks located at the interface of the composite components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muskhelishvili N (1977) Some basic problems of the mathematical theory of elasticity. Springer, Dordrecht

    Book  Google Scholar 

  2. Panasyuk V (1968) Limit equilibrium of brittle bodies with cracks. Naukova Dumka, Kyiv (translation in English: Michigan information service, Detroit, 1971) (in Russian)

    Google Scholar 

  3. Parton V, Kudryavtsev B (1988) Electromagnetoelasticity. Gordon and Breach Science Publishers, New York

    Google Scholar 

  4. Cherepanov G (1979) Mechanics of brittle fracture. McGraw-Hill International Book Co., New York

    MATH  Google Scholar 

  5. Cruse T (1988) Boundary element analysis in computational fracture mechanics. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  6. Hahn H (1976) Bruchmechanik: Einführung in die theoretischen Grundlagen. Mechanik, Teubner-Studienbüche, Stuttgart

    MATH  Google Scholar 

  7. Sneddon L, Lowengrub M (1969) Crack problems in the classical theory of elasticity. Wiley, New York

    MATH  Google Scholar 

  8. Sih G (1973) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol 1. Noordhoff International Publisher, Leyden

    Google Scholar 

  9. Kassir M, Sih G (1975) Three dimensional crack problems. Mechanics of fracture, vol 2. Noordhoff International Publisher, Leyden

    Google Scholar 

  10. Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminatwerkstoffe. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  11. Qin Q (2001) Fracture mechanics of piezoelectric materials. WIT Press, Southampton and Boston

    Google Scholar 

  12. Kienzler R (1993) Konzepte der Bruchmechanik. Vieweg, Wiesbaden

    Google Scholar 

  13. Atluri S (1986) Computational methods in the mechanics of fracture. Elsevier Science Publisher, Noorth-Holland

    MATH  Google Scholar 

  14. Schwalbe K, Scheider I, Cornec A (2013) Guidelines for applying cohesive models to the damage behaviour of engineering materials. Springer, Heidelberg

    Book  Google Scholar 

  15. Freund L (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  16. Gdoutos E (1990) Fracture mechanics criteria and applications. Kluwer, Dordrecht, The Netherlands

    Book  MATH  Google Scholar 

  17. Kanninen M, Popelar C (1985) Advanced fracture mechanics. Oxford University Press, New York

    MATH  Google Scholar 

  18. Tada H, Paris P, Irwin G (1985) The stress analysis of cracks handbook, 2nd edn. Paris Production Inc., St. Louis

    Google Scholar 

  19. Murakami Y (1987) Stress intensity factors handbook, vols 1–5. Pergamon Press, Oxford

    Google Scholar 

  20. Williams ML (1959) The stresses around a fault or cracks in dissimilar media. Bull Seism Soc America 49:199–204

    MathSciNet  Google Scholar 

  21. Rice JR, Sih GC (1965) Plane problems of cracks in dissimilar media. J Appl Mech 32:418–423

    Article  Google Scholar 

  22. England A (1965) A crack between dissimilar media. Trans ASME J Appl Mech 32:400–402

    Article  Google Scholar 

  23. Erdogan F (1965) Stress distribution in bonded dissimilar materials with cracks. Trans ASME J Appl Mech 32(15):2027–2040

    Google Scholar 

  24. Mossakovsky V, Rybka M (1964) Generalization of the Griffith-Sneddon criterion for the case of a nonhomogeneous body. J Appl Math Mech 28(6):1277–1286

    Google Scholar 

  25. Nahta R, Moran B (1993) Domain integrals for axisymmetric interface crack problems. Int J Solids Struct 30:403–410

    Article  MATH  Google Scholar 

  26. Martin-Moran C, Barber J, Comninou M (1983) The penny-shaped interface crack with heat flow. Part 1: perfect contact. J Appl Mech 50:29–36

    Article  MathSciNet  MATH  Google Scholar 

  27. Martin-Moran C, Barber J, Comninou M (1983) The penny-shaped interface crack with heat flow. Part 2: imperfect contact. J Appl Mech 50:770–776

    Article  MATH  Google Scholar 

  28. Zhao M, Dang H, Fan C, Chen Z (2016) Analysis of an arbitrarily shaped interface cracks in a three-dimensional isotropic thermoelastic bi-material. Part 1: theoretical solution. Int J Solids Struct 97:168–181

    Article  Google Scholar 

  29. Rice J (1988) Elastic fracture mechanics concept for interfacial cracks. J Appl Mech 55:98–103

    Article  Google Scholar 

  30. Clements D (1971) A crack between dissimilar anisotropic media. Int J Engen Sci 9:257–265

    Article  MATH  Google Scholar 

  31. Hwu C (1993) Fracture parameters for the orthotropic bimaterial interface cracks. Eng Fract Mech 45:89–97

    Article  Google Scholar 

  32. Kattis M (1999) Nonplanar interfacial cracks in anisotropic bimaterials. Int J Fract 98:313–327

    Article  Google Scholar 

  33. Quan W, Sun CT (1998) Methods for calculating stress intensity factors for interfacial cracks between two orthotropic solids. Int J Solids Struct 35:3317–3330

    Article  MATH  Google Scholar 

  34. Ting TCT (1986) Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int J Solids Struct 22:965–983

    Article  MathSciNet  MATH  Google Scholar 

  35. Ting TCT (1990) Interface cracks in anisotropic bimaterial. J Mech Phys Solids 38:505–513

    Article  Google Scholar 

  36. Ting TCT (2000) Recent developments in anisotropic elasticity. Int J Solids Struct 37:401–409

    Article  MathSciNet  MATH  Google Scholar 

  37. Comninou M (1977) The interface crack. J Appl Mech 44:631–636

    Article  MATH  Google Scholar 

  38. Comninou M (1978) The interface crack in a shear field. ASME J Appl Mech 45:287–290

    Article  MATH  Google Scholar 

  39. Dundurs J, Comninou M (1979) Some consequences of inequality conditions in contact and crack problems. J Elast 9:71–82

    Article  MATH  Google Scholar 

  40. Comninou M, Dundurs J (1983) Partial closure of cracks at the interface between a layer and a hald-space. Eng Fract Mech 18:315–323

    Article  Google Scholar 

  41. Ni L, Nemat-Nasser S (1991) Interface cracks in anisotropic dissimilar materials: an analytical solution. J Mech Phys Solids 39:113–144

    Article  MathSciNet  MATH  Google Scholar 

  42. Ni L, Nemat-Nasser S (1992) Interface cracks in anisotropic dissimilar materials: general case. Quaterly Appl Math 2:305–322

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang Y, Wang W, Liu C, Rosakis A (1998) Intersonic crack growth in bimaterial interfaces: an investigation of crack face contact. J Mech Phys Solids 46:2233–2259

    Article  MATH  Google Scholar 

  44. Simonov IV (1984) On the steady motion of a crack with slip and separation sections along the interface of two elastic materials. J Appl Math Mech 48(3):347–353. https://doi.org/10.1016/0021-8928(84)90144-8

  45. Simonov I (1985) Brittle cleavage of a piecewise-homogeneous elastic medium. J Appl Math Mech 49(2):207–214

    Article  MathSciNet  MATH  Google Scholar 

  46. Simonov IV (1986) Crack at an interface in a uniform stress field. Mech Compos Mater 21:650–657. https://doi.org/10.1007/BF00605924

  47. Beom H, Atluri S (1996) Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int J Fract 75:163–183

    Article  Google Scholar 

  48. Atkinson C (1977) On stress singularities and interfaces in linear elastic fracture mechanics. Int J Fract 13:807–820

    Article  MathSciNet  Google Scholar 

  49. Atkinson C (1982) The interface crack with a contact zone (an analytical treatment). Int J Fract 18:161–177

    MathSciNet  Google Scholar 

  50. Gautesen A, Dundurs J (1987) The interface crack in a tension field. J Appl Mech 54:93–98

    Article  MathSciNet  MATH  Google Scholar 

  51. Gautesen A, Dundurs J (1988) The interface crack under a combined loading. ASME J Appl Mech 55:580–586

    Article  MATH  Google Scholar 

  52. Dundurs J, Gautesen A (1988) An opportunistic analysis of the interface crack. Int J Fract 36:151–159

    Article  Google Scholar 

  53. Gautesen A (1992) The interface crack in a tension field: an eigenvalue problem for the gap. Int J Fract 55:261–271

    Google Scholar 

  54. Gautesen A (1993) The interface crack under a combined loading. Int J Fract 60:349–361

    Google Scholar 

  55. Loboda V (1993) The quasi-invariant in the theory of interface cracks. Eng Fract Mech 44:573–580

    Article  Google Scholar 

  56. Kharun I, Loboda V (2003) A set of interface cracks with contact zones in combined tension-shear field. Acta Mechanica 166:43–56

    Article  MATH  Google Scholar 

  57. Kharun I, Loboda V (2004) A thermoelastic problem for interface cracks with contact zones. Int J Solids Struct 41:159–175

    Article  MATH  Google Scholar 

  58. Kharun I, Loboda V (2002) Interface cracks with contact zones in the field of concentrated forces and moments. Math Methods Phys-Mech Fields 45(2):103–113 (in Ukrainian)

    Google Scholar 

  59. Wang SS, Choi I (1983) The interface crack between dissimilar anisotropic composite materials. J Appl Mech 50:169–178

    Article  MathSciNet  MATH  Google Scholar 

  60. Qu J, Xue Y (1998) Three-dimensional interface cracks in anisotropic bimaterials: the non-oscillatory case. J Appl Mech 65:1048–1055

    Article  Google Scholar 

  61. Nakhmein E, Nuller B (1976) A method for solving of contact periodic problems for the elastic strip and ring. USSR AS, MTT 40(3):53–61 (in Russian)

    Google Scholar 

  62. Nakhmein E, Nuller B (1986) Contact between an elastic half-plane and a partly separated stamp. J Appl Math Mech 50(4):507–515

    Article  MATH  Google Scholar 

  63. Nakhmein E, Nuller B (1988) The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J Appl Math Mech 52(2):223–230

    Article  MathSciNet  MATH  Google Scholar 

  64. Nakhmein E, Nuller B (1992) Combined periodic boundary-value problems and their applications in the theory of elasticity. J Appl Math Mech 56:82–89

    Article  MathSciNet  Google Scholar 

  65. Herrmann K, Loboda V (1999) On interface crack models with contact zones situated in an anisotropic bimaterial. Arch Appl Mech 69:317–335

    Article  MATH  Google Scholar 

  66. Herrmann K, Loboda V (2001) Contact zones models for an interface crack in a thermomechanically loaded anisotropic bimaterial. J Therm Stress 24:479–506

    Article  Google Scholar 

  67. Kharun I, Loboda V (2004) A problem of thermoelasticity for a set of interface cracks with contact zones between dissimilar anisotropic materials. Mech Mater 7:585–600

    Article  Google Scholar 

  68. Grinchenko V, Ulitko A, Shulga N (1989) Electroelasticity. In Mechanics of coupled fields in the elements of constructions, 5 vol, Naukova Dumka (in Russian)

    Google Scholar 

  69. Zhang T, Zhao M, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38:147–289

    Article  Google Scholar 

  70. Chen Y-H, Lu T (2003) Cracks and fracture in piezoelectrics. Adv Appl Mech 39:121–215

    Article  Google Scholar 

  71. Zhang T, Gao C-F (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41:339–379

    Article  Google Scholar 

  72. Schneider G (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann Rev Mater Res 37:491–538

    Article  Google Scholar 

  73. Kudryavtsev B, Parton V, Rakitin V (1975) Fracture mechanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with a conductor. J Appl Math Mech 39(1):136–146

    Article  MathSciNet  MATH  Google Scholar 

  74. Fil’shtinskii L, Fil’shtinskii M (1994) Green’s function for a composite piezoceramic plane with a crack between phases. J Appl Math Mech 58(2):355–362

    Article  MathSciNet  Google Scholar 

  75. Wang T, Han X (1999) Fracture mechanics of piezoelectric materials. Int J Fract 98:15–35

    Article  Google Scholar 

  76. Gao C-F, Wang M (2000) Collinear permeable cracks between dissimilar piezoelectric materials. Int J Solids Struct 37:4969–4986

    Article  MATH  Google Scholar 

  77. Beom H (2003) Permeable cracks between two dissimilar piezoelectric materials. Int J Solids Struct 40:6669–6679

    Article  MATH  Google Scholar 

  78. Gao C-F, Hausler C, Balke H (2004) Periodic permeable interface cracks in pizoelectric materials. Int J Solids Struct 41:323–335

    Article  MATH  Google Scholar 

  79. Zhou Z-G, Wang B (2006) Investigation of behavior of Mode-I interface crack in piezoelectric materials by using Schmidt method. Appl Math Mech 27:871–882

    Google Scholar 

  80. Deeg W (1980) The analysis of dislocation, crack and inclusion problems in piezoelectric solids. PhD thesis, Stanford University

    Google Scholar 

  81. Sosa H (1991) Plane problems in piezoelectric media with defects. Int J Solids Struct 28:491–505

    Article  MATH  Google Scholar 

  82. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Google Scholar 

  83. Lekhnitsky S (1963) Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day

    Google Scholar 

  84. Stroh AN (1962) Steady state problems in anisotropic elasticity. J Math Phys 41:77–103

    Article  MathSciNet  MATH  Google Scholar 

  85. Gao C-F, Fan W (1999) Exact solution for the plane problem in piezoelectric materials with an elliptic hole or a crack. Int J Solid Struct 36:2527–2540

    Article  MathSciNet  MATH  Google Scholar 

  86. Pak Y (1992) Linear electro-elastic fracture mechanics of piezoelectric materials. Int J Fract 54:79–100

    Article  Google Scholar 

  87. Ru CQ, Mao X, Epstein M (1998) Electric-field induced interfacial cracking in multilayer electrostrictive actuators. J Mech Phys Solids 46:1301–1318

    Article  MathSciNet  MATH  Google Scholar 

  88. Ru CQ (1999) Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. Int J Solids Struct 36:869–883

    Article  MATH  Google Scholar 

  89. Shen S, Nishioka T, Hu SL (2000) Crack propagation along the interface of piezoelectric bimaterial. Theor Appl Fract Mech 34:185–203

    Article  Google Scholar 

  90. Wang XD (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 37:6031–6049

    Article  MATH  Google Scholar 

  91. Wang XD, Meguid SA (2000) On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure. Int J Solids Struct 37:3231–3251

    Article  MATH  Google Scholar 

  92. Hao T, Shen Z (1994) A new electric boundary condition of electric fracture mechanics and its application. Eng Fract Mech 47:793–802

    Article  Google Scholar 

  93. Dunn M (1994) The effect of crack faces boundary conditions on the fracture mechanics of piezoelectric solids. Eng Fract Mech 48:25–39

    Article  Google Scholar 

  94. McMeeking R (1999) Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Fract Mech 64:217–244

    Article  Google Scholar 

  95. Xu X, Rajapakse RKND (2001) On a plane crack in piezoelectric solids. Int J Solids Struct 38:7643–7658

    Article  MATH  Google Scholar 

  96. Wang BL, May YW (2003) On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int J Eng Sci 41:633–652

    Article  Google Scholar 

  97. Gruebner O, Kamlah M, Munz D (2003) Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng Fract Mech 70:1399–1413

    Article  Google Scholar 

  98. Govorukha V, Loboda V, Kamlah M (2006) On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound. Int J Solid Struct 43:1979–1990

    Article  MATH  Google Scholar 

  99. Li Q, Chen Y (2008) Solution for a semi-permeable interface crack in elastic dielectric/piezoelectric bimaterials. ASME J Appl Mech 75:1–13

    Google Scholar 

  100. Landis C (2004) Electrically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41:6291–6315

    Article  MATH  Google Scholar 

  101. Li W, McMeeking R, Landis C (2008) On the crack face boundary conditions in electromechanical fracture and an experiment protocol for determining energy release rates. Eur J Mech A/Solids 27:285–301

    Article  MATH  Google Scholar 

  102. Ricoeur A, Kuna M (2009) Electrostatic traction at dielectric interfaces and their implication for crack boundary conditions. Mech Res Commun 36:330–335

    Article  MATH  Google Scholar 

  103. Qin Q, Mai Y-W (1999) A closed crack tip model for interface cracks in thermopiezoelectric materials. Int J Solids Struct 36:2463–2479

    Article  MATH  Google Scholar 

  104. Herrmann K, Loboda V (2000) Fracture mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch Appl Mech 70:127–143

    Article  MATH  Google Scholar 

  105. Herrmann K, Loboda V, Govorukha V (2001) On contact zone model for an interface crack with electrically insulated crack surfaces in a piezoelectric bimaterial. Int J Fract 111:203–227

    Google Scholar 

  106. Comninou M (1977) Interface crack with friction in the contact zone. J Appl Mech 44(4):780–781

    Article  Google Scholar 

  107. Comninou M, Dundurs J (1980) Effect of friction on the interface crack loaded in shear. J Elast 10(2):203–212

    Article  MathSciNet  MATH  Google Scholar 

  108. Leguillon D (1999) Interface crack tip singularity with contact and friction. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy, vol 327, no 5, pp 437–442

    Google Scholar 

  109. Antipov Y (1995) An interface crack between elastic materials when there is dry friction. J Appl Math Mech 59(2):273–287

    Article  MathSciNet  MATH  Google Scholar 

  110. Ostrik V (2003) Friction contact of the edges of an interface crack under the conditions of tension and shear. Mater Sci 39(2):214–224

    Article  MathSciNet  Google Scholar 

  111. Sapsathiarn Y, Senjuntichai T, Rajapakse R (2012) Cylindrical interface cracks in 1-3 piezocomposites. Compos: Part B 43:2257–2264

    Google Scholar 

  112. Loboda V, Kharun I (2001) Plane problem of a crack on the interface of orthotropic plates with friction of crack lips. Mater Sci 37(5):735–745

    Article  Google Scholar 

  113. Kaminsky A, Kipnis L, Kolmakova V (1995) Slip lines at the end of a cut at the interface of different media. Int Appl Mech 31(6):491–495

    Article  MATH  Google Scholar 

  114. Kaminsky A, Kipnis L, Kolmakova V (1999) On the Dugdale model for a crack at the interface of different media. Int Appl Mech 35(1):58–63

    Google Scholar 

  115. Kaminsky A, Kipnis L, Dudik I (2004) Initial development of the prefracture zone near the tip of a crack reaching the interface between dissimilar media. Int Appl Mech 40(2):176–182

    Article  Google Scholar 

  116. Kaminsky A, Dudik I, Kipnis L (2006) On the direction of development of a thin fracture process zone at the tip of an interfacial crack between dissimilar media. Int Appl Mech 42(2):136–144

    Article  Google Scholar 

  117. Kaminsky A, Dudik I, Kipnis L (2007) Initial kinking of an interface crack between two elastic media. Int Appl Mech 43(10):1090–1099

    Article  MathSciNet  MATH  Google Scholar 

  118. Loboda V, Sheveleva A (2003) Determining prefracture zones at a crack tip between two elastic orthotropic bodies. Int Appl Mech 39(5):566–572

    Article  MATH  Google Scholar 

  119. Sulim G, Grilitskii D, Belokur I (1977) Periodic problem for composite plane with cracks. Mater Sci 13(1):72–75

    Article  Google Scholar 

  120. Nakhmein E, Nuller B, Ryvkin M (1982) Deformation of a composite elastic plane weakened by a periodic system of the arbitrarily loaded slits. J Appl Math Mech 45(6):821–826

    Article  MATH  Google Scholar 

  121. Kudryavtsev B, Rakitin V (1976) Periodic set of cracks at the interface of piezoelectric and solid conductor. USSR Acad Sci Mech Solids 2:121–129 (in Russian)

    Google Scholar 

  122. Kaloerov S, Boronenko O (2006) Magnetoelastic problem for a body with periodic elastic inclusions. Int Appl Mech 42(9):989–996

    Article  MATH  Google Scholar 

  123. Häusler C, Gao C-F, Balke H (2004) Collinear and periodic electrode-ceramic interfacial cracks in piezoelectric bimaterials. ASME J Appl Mech 71:486–492

    Article  MATH  Google Scholar 

  124. Schmueser D, Comninou M (1979) The periodic array of interface cracks and their interaction. Int J Solids Struct 15:927–934

    Article  MATH  Google Scholar 

  125. Ru C (2000) Electrode-ceramic interfacial cracks in piezoelectric multilayer materials. Trans ASME J Appl Mech 67:255–261

    Article  MATH  Google Scholar 

  126. Liu M, Hsia K (2003) Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. J Mech Phys Solids 51:921–944

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kozinov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kozinov, S., Loboda, V. (2020). Literature Review on Cracks Located at the Interface of Dissimilar Materials (Interface Cracks). In: Fracture Mechanics of Electrically Passive and Active Composites with Periodic Cracking along the Interface. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43138-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43138-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43137-2

  • Online ISBN: 978-3-030-43138-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics