Skip to main content

Computing an Invariant of a Linear Code

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Abstract

In this work we present an efficient algorithm that generates the leader codewords of a linear code in an incremental form. On the other hand, using the set of leader codewords we define a transformation that remains invariant only if the codes are equivalent which is used as a signature for checking the code equivalence problem. An upper bound on the weight of the codewords is imposed to this algorithm in order to get a smallest set that can be also used as a signature for the ‘Code Equivalence Problem’.

E. Martínez-Moro—Partially supported by the Spanish State Research Agency (AEI) under Grants MTM2015-65764-C3-1, PGC2018-096446-B-C21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1395–1408. Society for Industrial and Applied Mathematics (2011)

    Google Scholar 

  2. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-Correcting Linear Codes: Classification by Isometry and Applications, vol. 18. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31703-1

    Book  MATH  Google Scholar 

  3. Borges-Quintana, M., Borges-Trenard, M., Márquez-Corbella, I., Martínez-Moro, E.: Computing coset leaders and leader codewords of binary codes. J. Algebra Appl. 14(8), 19 (2015)

    Article  MathSciNet  Google Scholar 

  4. Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On a Gröbner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10(2), 151–191 (2007)

    Article  MathSciNet  Google Scholar 

  5. Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On the weak order ideal associated to linear codes. Math. Comput. Sci. 12(3), 339–347 (2018)

    Article  MathSciNet  Google Scholar 

  6. Braun, G., Pokutta, S.: A polyhedral characterization of border bases. SIAM J. Discrete Math. 30(1), 239–265 (2016)

    Article  MathSciNet  Google Scholar 

  7. Helleseth, T., Kløve, T., Levenshtein, V.I.: Error-correction capability of binary linear codes. IEEE Trans. Inf. Theory 51(4), 1408–1423 (2005)

    Article  MathSciNet  Google Scholar 

  8. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inform. Theory 28, 496–511 (1982)

    Article  MathSciNet  Google Scholar 

  9. Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  10. Petrank, E., Roth, R.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43(5), 1602–1604 (1997)

    Article  MathSciNet  Google Scholar 

  11. Sendier, N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  12. Sendier, N., Simos, D.: How easy is code equivalence over \(\mathbb{F}_q\)? In: International Workshop on Coding and Cryptography (2013). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf

  13. Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_14

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mijail Borges-Quintana or Edgar Martínez-Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borges-Quintana, M., Borges-Trenard, M.Á., Martínez-Moro, E., Torres-Guerrero, G. (2020). Computing an Invariant of a Linear Code. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics