Skip to main content

Certified Hermite Matrices from Approximate Roots - Univariate Case

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11989))

Abstract

Let \(f_1, \ldots , f_m\) be univariate polynomials with rational coefficients and \(\mathcal {I}:=\langle f_1, \ldots , f_m\rangle \subset {\mathbb Q}[x]\) be the ideal they generate. Assume that we are given approximations \(\{z_1, \ldots , z_k\}\subset \mathbb {Q}[i]\) for the common roots \(\{\xi _1, \ldots , \xi _k\}=V(\mathcal {I})\subseteq {\mathbb C}\). In this study, we describe a symbolic-numeric algorithm to construct a rational matrix, called Hermite matrix, from the approximate roots \(\{z_1, \ldots , z_k\}\) and certify that this matrix is the true Hermite matrix corresponding to the roots \(V({\mathcal I})\). Applications of Hermite matrices include counting and locating real roots of the polynomials and certifying their existence.

T. A. Akoglu—partially supported by TUBITAK grant 119F211.

A. Szanto—partially supported by NSF grants CCF-1813340 and CCF-1217557.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ayyildiz Akoglu, T., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over Q. J. Symb. Comput. 84, 147–171 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ayyildiz Akoglu, T.: Certifying solutions to polynomial systems over Q. Ph.D. thesis, North Carolina State University (2016)

    Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. AACIM, vol. 10. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

    Book  MATH  Google Scholar 

  4. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration. J. Symb. Comput. 86, 51–96 (2018)

    Article  MathSciNet  Google Scholar 

  5. González-Vega, L.: On the complexity of computing the greatest common divisor of several univariate polynomials. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911, pp. 332–345. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59175-3_100

    Chapter  Google Scholar 

  6. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)

    Google Scholar 

  7. Hermite, C.: Sur le nombre des racines d’une équation algébrique comprise entre des limites données. J. Reine Angew. Math. 52, 39–51 (1850). Also in Oeuvres completes, vol. 1, pp. 397–414

    Google Scholar 

  8. Hermite, C.: Remarques sur le théorème de Sturm. CR Acad. Sci. Paris 36(52–54), 171 (1853)

    Google Scholar 

  9. Hermite, C.: Extrait d’une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt de Berlin sur le nombre des racines d’une équation algébrique comprises entre des limites données. Journal für die reine und angewandte Mathematik 52, 39–51 (1856)

    Google Scholar 

  10. Pan, V.Y.: Nearly optimal polynomial root-finders: the state of the art and new progress. arXiv:1805.12042v10 [cs.NA] (2019)

  11. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theoret. Comput. Sci. 409(2), 269–281 (2008)

    Article  MathSciNet  Google Scholar 

  12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Steffy, D.E.: Exact solutions to linear systems of equations using output sensitive lifting. ACM Commun. Comput. Algebra 44(3/4), 160–182 (2011)

    MATH  Google Scholar 

  14. Wan, Z.: An algorithm to solve integer linear systems exactly using numerical methods. J. Symb. Comput. 41, 621–632 (2006)

    Article  MathSciNet  Google Scholar 

  15. Wang, X., Pan, V.Y.: Acceleration of Euclidean algorithm and rational number reconstruction. SIAM J. Comput. 32(2), 548–556 (2003)

    Article  MathSciNet  Google Scholar 

  16. Weisstein, E.W.: Newton-Girard Formulas. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/Newton-GirardFormulas.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulay Ayyildiz Akoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayyildiz Akoglu, T., Szanto, A. (2020). Certified Hermite Matrices from Approximate Roots - Univariate Case. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics