Skip to main content

The Immune Consequences of Lactate in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1259))

Abstract

The tumor microenvironment consists of complex and dynamic networks of cytokines, growth factors, and metabolic products. These contribute to significant alterations in tissue architecture, cell growth, immune cell phenotype, and function. Increased glycolytic flux is commonly observed in solid tumors and is associated with significant changes in metabolites, generating high levels of lactate. While elevated glycolytic flux is a characteristic metabolic adaption of tumor cells, glycolysis is also a key metabolic program utilized by a variety of inflammatory immune cells. As such lactate and the pH changes associated with lactate transport affect not only tumor cells but also immune cells. Here we provide an overview of lactate metabolic pathways and the effects lactate has on tumor growth and immune cell function. This knowledge provides opportunities for synergistic therapeutic approaches that combine metabolic drugs, which limit tumor growth and support immune cell function, together with immunotherapies to enhance tumor eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  CAS  PubMed  Google Scholar 

  2. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  4. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer–immune set point. Nature 541:321–330

    Article  CAS  PubMed  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie J et al (2015) Beyond Warburg effect – dual metabolic nature of cancer cells. Sci Rep 4:4927

    Article  CAS  Google Scholar 

  8. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamphorst JJ et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci 110:8882–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  13. Goveia J et al (2016) Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol Med 8:1134–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Payen VL et al (2017) Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter. Cancer Res 77:5591–5601

    Article  CAS  PubMed  Google Scholar 

  15. Carmona-Fontaine C et al (2017) Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci 114:2934–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brand A et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–671

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J et al (2015) Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Sci Rep 5:9800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walenta S et al (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150:409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwickert G, Walenta S, Sundfør K, Rofstad EK, Mueller-Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

    CAS  PubMed  Google Scholar 

  20. Sagman U et al (1991) The prognostic significance of pretreatment serum lactate dehydrogenase in patients with small-cell lung cancer. J Clin Oncol 9:954–961

    Article  CAS  PubMed  Google Scholar 

  21. Malhotra P, Sidhu LS, Singh SP (1986) Serum lactate dehydrogenase level in various malignancies. Neoplasma 33:641–647

    CAS  PubMed  Google Scholar 

  22. Rizwan A et al (2013) Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors. Clin Cancer Res 19:5158–5169

    Article  CAS  PubMed  Google Scholar 

  23. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    Article  CAS  PubMed  Google Scholar 

  24. Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  CAS  PubMed  Google Scholar 

  25. Halestrap AP (2013) The SLC16 gene family - structure, role and regulation in health and disease. Mol Asp Med 34:337–349

    Article  CAS  Google Scholar 

  26. Pinheiro C et al (2010) Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol 2010:1–7

    Article  CAS  Google Scholar 

  27. Sonveaux P et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 4:727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roef MJ et al (2003) Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise. Am J Physiol Endocrinol Metab 284:E1162–E1171

    Article  CAS  PubMed  Google Scholar 

  30. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24:382–391

    Article  CAS  PubMed  Google Scholar 

  31. Cai T-Q et al (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 377:987–991

    Article  CAS  PubMed  Google Scholar 

  32. Ranganathan P et al (2018) GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis. J Immunol 200:1781–1789

    CAS  PubMed  Google Scholar 

  33. Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ (2014) Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146:1763–1774

    Article  CAS  PubMed  Google Scholar 

  34. Seth RB, Sun L, Ea C-K, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669–682

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W et al (2019) Lactate is a natural suppressorof RLR signaling by targeting MAVS.Cell 178:176--189.e15

    Google Scholar 

  36. Hui S et al (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Whitaker-Menezes D et al (2011) Evidence for a stromal-epithelial “lactate shuttle” in human tumors. Cell Cycle 10:1772–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. García-Cañaveras JC, Chen L, Rabinowitz JD (2019) The tumor metabolic microenvironment: lessons from lactate. Cancer Res 79:3155–3162

    Article  PubMed  PubMed Central  Google Scholar 

  39. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wu H et al (2012) Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 227:189–199

    Article  CAS  PubMed  Google Scholar 

  41. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF- B/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  CAS  PubMed  Google Scholar 

  42. Sonveaux P et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7:e33418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stern R, Shuster S, Neudecker BA, Formby B (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276:24–31

    Article  CAS  PubMed  Google Scholar 

  44. Riedel A et al (2018) Tumor pre-conditioning ofdraining lymph node stroma by lactic acid. bioRxiv442137 https://doi.org/10.1101/442137

  45. Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alonso D, Nungester WJ (1956) Comparative study of host resistance of Guinea pigs and rats V. the effect of pneumococcal products on glycolysis and oxygen uptake by polymorphonuclear leucocytes J Infect Dis 99:174–181

    CAS  PubMed  Google Scholar 

  47. Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Assmann N et al (2017) Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 18:1197–1206

    Article  CAS  PubMed  Google Scholar 

  49. MacIver NJ et al (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84:949–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. O’Neill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yaqoob P (2003) Fatty acids as gatekeepers of immune cell regulation. Trends Immunol 24:639–645

    Article  CAS  PubMed  Google Scholar 

  52. Pearce EL et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Michalek RD et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  Google Scholar 

  54. Jha AK et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430

    Article  CAS  PubMed  Google Scholar 

  55. van der Windt GJW et al (2013) CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA 110:14336–14341

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mills EL et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mills EL et al (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tannahill GM et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ryan DG et al (2019) Coupling Krebs cycle metabolitesto signalling in immunity and cancer. NatMetab 11(1):16

    Google Scholar 

  60. Moon J-S et al (2015) mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep 12:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang C-H et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mills EL, Kelly B, O’Neill LAJ (2017) Mitochondria are the powerhouses of immunity. Nat Immunol 18:488–498

    Article  CAS  PubMed  Google Scholar 

  63. Murray PJ, Wynn TA (2011) Protective andpathogenic functions of macrophage subsets. NatRev Immunol 11:723--737

    Google Scholar 

  64. Colegio OR et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463

    CAS  PubMed  Google Scholar 

  66. Peter K, Rehli M, Singer K, Renner-Sattler K, Kreutz M (2015) Lactic acid delays the inflammatory response of human monocytes. Biochem Biophys Res Commun 457:412–418

    Article  CAS  PubMed  Google Scholar 

  67. Shime H et al (2008) Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 180:7175–7183

    Article  CAS  PubMed  Google Scholar 

  68. Dietl K et al (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184:1200–1209

    Article  CAS  PubMed  Google Scholar 

  69. Gottfried E et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021

    Article  CAS  PubMed  Google Scholar 

  70. Nasi A et al (2013) Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 191:3090–3099

    Article  CAS  PubMed  Google Scholar 

  71. Fischer K et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819

    Article  CAS  PubMed  Google Scholar 

  72. Pötzl J et al (2017) Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer 140:2125–2133

    Article  PubMed  CAS  Google Scholar 

  73. Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191:1486–1495

    Article  CAS  PubMed  Google Scholar 

  74. Harmon C et al (2019) Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res 7:335–346

    Article  PubMed  CAS  Google Scholar 

  75. Chabner BA, Roberts TG (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    Article  CAS  PubMed  Google Scholar 

  76. Renner K et al (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 8:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  CAS  PubMed  Google Scholar 

  78. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846

    Article  CAS  Google Scholar 

  79. Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH (2001) Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 60:729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Doherty J, Cleveland J (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123:3685–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ganapathy-Kanniappan S, Geschwind J-FH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Raez LE et al (2013) A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71:523–530

    Article  CAS  PubMed  Google Scholar 

  83. Liberti MV et al (2017) A predictive model forselective targeting of the Warburg effect throughGAPDH inhibition with a natural product. CellMetab 26:648--659.e8

    Google Scholar 

  84. Noble RA et al (2017) Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and burkitt lymphoma. Haematologica 102:1247–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Manerba M et al (2012) Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase. ChemMedChem 7:311–317

    Article  CAS  PubMed  Google Scholar 

  86. Le A et al (2010) Inhibition of lactate dehydrogenase a induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci 107:2037–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Critchlow SE et al (2019) Abstract 1207: Reversinglactate-driven immunosuppression using the novel,potent and selective MCT4 inhibitor AZD0095. In:Experimental and molecular therapeutics, pp 1207--1207

    Google Scholar 

  88. Ibrahim-Hashim A et al (2017) Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 6:1720–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17:577–593

    Article  CAS  PubMed  Google Scholar 

  90. Adeva-Andany MM, Fernández-Fernández C, Mouriño-Bayolo D, Castro-Quintela E, Domínguez-Montero A (2014) Sodium bicarbonate therapy in patients with metabolic acidosis. Sci World J 2014:627673

    Google Scholar 

  91. Chao M et al (2016) A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife 5:e15691

    Google Scholar 

  92. Nazarewicz RR et al (2013) Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxid Redox Signal 19:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Porporato PE et al (2014) A mitochondrial switch promotes tumor metastasis. Cell Rep 8:754–766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harmon, C., O’Farrelly, C., Robinson, M.W. (2020). The Immune Consequences of Lactate in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-43093-1_7

Download citation

Publish with us

Policies and ethics