Skip to main content

Exercise and Physical Activity in Patients with Osteosarcoma and Survivors

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

Exercise has the potential to positively affect patients with osteosarcoma by improvement of function, mitigation of disability, and maintenance of independence and quality of life. Exercise may also directly impact cancer treatment efficacy. This chapter examines the feasibility and use of exercise or physical activity as therapy in the treatment of osteosarcoma and its survivors. It additionally presents the benefits of physical activity as treatment and rehabilitation both preoperatively (prehabilitation) and postoperatively. This chapter will also discuss barriers to exercise and physical activity for patients with osteosarcoma and its survivors, emphasizing the need for a comprehensive and cohesive support system to promote its incorporation into patient treatment plans and ensure compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Punzalan M, Hyden G (2009) The role of physical therapy and occupational therapy in the rehabilitation of pediatric and adolescent patients with osteosarcoma. Cancer Treat Res 152:367–384. https://doi.org/10.1007/978-1-4419-0284-9_20

    Article  PubMed  Google Scholar 

  2. Conroy DE, Wolin KY, Blair CK, Demark-Wahnefried W (2017) Gender-varying associations between physical activity intensity and mental quality of life in older cancer survivors. Support Care Cancer 25:3465–3473. https://doi.org/10.1007/s00520-017-3769-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ness KK et al (2009) Predictors of inactive lifestyle among adult survivors of childhood cancer. Cancer 115:1984–1994. https://doi.org/10.1002/cncr.24209

    Article  PubMed  Google Scholar 

  4. Hayes SC, Spence RR, Galvao DA, Newton RU (2009) Australian Association for Exercise and Sport Science position stand: optimising cancer outcomes through exercise. J Sci Med Sport 12:428–434. https://doi.org/10.1016/j.jsams.2009.03.002

    Article  PubMed  Google Scholar 

  5. Jensen W et al (2014) Physical exercise and therapy in terminally ill cancer patients: a retrospective feasibility analysis. Support Care Cancer 22:1261–1268. https://doi.org/10.1007/s00520-013-2080-4

    Article  PubMed  Google Scholar 

  6. Baumann FT, Bloch W, Beulertz J (2013) Clinical exercise interventions in pediatric oncology: a systematic review. Pediatr Res 74:366–374. https://doi.org/10.1038/pr.2013.123

    Article  PubMed  Google Scholar 

  7. Heywood R, McCarthy AL, Skinner TL (2017) Safety and feasibility of exercise interventions in patients with advanced cancer: a systematic review. Support Care Cancer 25:3031–3050. https://doi.org/10.1007/s00520-017-3827-0

    Article  PubMed  Google Scholar 

  8. Huang TT, Ness KK (2011) Exercise interventions in children with cancer: a review. Int J Pediatr 2011:461512. https://doi.org/10.1155/2011/461512

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brawley LR, Culos-Reed SN, Angove J, Hoffman-Goetz L (2002) Understanding the barriers to physical activity for cancer patients. J Psychosoc Oncol 20:1–21. https://doi.org/10.1300/J077v20n04_01

    Article  PubMed  Google Scholar 

  10. Gotte M, Kesting S, Winter C, Rosenbaum D, Boos J (2014) Experience of barriers and motivations for physical activities and exercise during treatment of pediatric patients with cancer. Pediatr Blood Cancer 61:1632–1637. https://doi.org/10.1002/pbc.25071

    Article  PubMed  Google Scholar 

  11. Marina N et al (2013) Changes in health status among aging survivors of pediatric upper and lower extremity sarcoma: a report from the childhood cancer survivor study. Arch Phys Med Rehabil 94:1062–1073. https://doi.org/10.1016/j.apmr.2013.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  12. Corr AM et al (2017) Feasibility and functional outcomes of children and adolescents undergoing preoperative chemotherapy prior to a limb-sparing procedure or amputation. Rehabil Oncol 35:38–45

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blair SN, Morris JN (2009) Healthy hearts--and the universal benefits of being physically active: physical activity and health. Ann Epidemiol 19:253–256. https://doi.org/10.1016/j.annepidem.2009.01.019

    Article  PubMed  Google Scholar 

  14. Ness KK et al (2005) Limitations on physical performance and daily activities among long-term survivors of childhood cancer. Ann Intern Med 143:639–647. https://doi.org/10.7326/0003-4819-143-9-200511010-00007

    Article  PubMed  Google Scholar 

  15. Meyerhardt JA et al (2006) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol Off J Am Soc Clin Oncol 24:3527–3534. https://doi.org/10.1200/JCO.2006.06.0855

    Article  Google Scholar 

  16. Ngo-Huang A et al (2017) Home-based exercise during preoperative therapy for pancreatic cancer. Langenbecks Arch Surg 402:1175–1185. https://doi.org/10.1007/s00423-017-1599-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Silver JK, Baima J (2013) Cancer prehabilitation: an opportunity to decrease treatment-related morbidity, increase cancer treatment options, and improve physical and psychological health outcomes. Am J Phys Med Rehabil 92:715–727. https://doi.org/10.1097/PHM.0b013e31829b4afe

    Article  PubMed  Google Scholar 

  18. Fiuza-Luces C et al (2017) Exercise intervention in pediatric patients with solid tumors: the physical activity in pediatric cancer trial. Med Sci Sports Exerc 49:223–230. https://doi.org/10.1249/MSS.0000000000001094

    Article  PubMed  Google Scholar 

  19. Morri M et al (2018) Compliance and satisfaction with intensive physiotherapy treatment during chemotherapy in patients with bone tumours and evaluation of related prognostic factors: an observational study. Eur J Cancer Care 27:e12916. https://doi.org/10.1111/ecc.12916

    Article  Google Scholar 

  20. Winter CC et al (2013) The effect of individualized exercise interventions during treatment in pediatric patients with a malignant bone tumor. Support Care Cancer 21:1629–1636. https://doi.org/10.1007/s00520-012-1707-1

    Article  PubMed  Google Scholar 

  21. Bower JE, Woolery A, Sternlieb B, Garet D (2005) Yoga for cancer patients and survivors. Cancer Control 12:165–171. https://doi.org/10.1177/107327480501200304

    Article  PubMed  Google Scholar 

  22. Lopez G et al (2018) Group yoga effects on cancer patient and caregiver symptom distress: assessment of self-reported symptoms at a Comprehensive Cancer Center. Integr Cancer Ther 17:1087–1094. https://doi.org/10.1177/1534735418795301

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wurz A, Chamorro-Vina C, Guilcher GM, Schulte F, Culos-Reed SN (2014) The feasibility and benefits of a 12-week yoga intervention for pediatric cancer out-patients. Pediatr Blood Cancer 61:1828–1834. https://doi.org/10.1002/pbc.25096

    Article  PubMed  Google Scholar 

  24. Zeng Y, Luo T, Xie H, Huang M, Cheng AS (2014) Health benefits of qigong or tai chi for cancer patients: a systematic review and meta-analyses. Complement Ther Med 22:173–186. https://doi.org/10.1016/j.ctim.2013.11.010

    Article  PubMed  Google Scholar 

  25. Haas BK, Kimmel G, Hermanns M, Deal B (2012) Community-based FitSTEPS for life exercise program for persons with cancer: 5-year evaluation. J Oncol Pract 8:320–324, 322 p following 324. https://doi.org/10.1200/jop.2012.000555

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kolden GG et al (2002) A pilot study of group exercise training (GET) for women with primary breast cancer: feasibility and health benefits. Psychooncology 11:447–456. https://doi.org/10.1002/pon.591

    Article  PubMed  Google Scholar 

  27. Cheville AL et al (2013) A home-based exercise program to improve function, fatigue, and sleep quality in patients with stage IV lung and colorectal cancer: a randomized controlled trial. J Pain Symptom Manag 45:811–821. https://doi.org/10.1016/j.jpainsymman.2012.05.006

    Article  Google Scholar 

  28. Esbenshade AJ et al (2014) Feasibility and initial effectiveness of home exercise during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatr Phys Ther 26:301–307. https://doi.org/10.1097/pep.0000000000000053

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nyrop KA et al (2018) Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer. Breast Cancer Res Treat 168:43–55. https://doi.org/10.1007/s10549-017-4565-1

    Article  CAS  PubMed  Google Scholar 

  30. Cormie P et al (2018) Clinical Oncology Society of Australia position statement on exercise in cancer care. Med J Aust 209:184–187

    Article  PubMed  Google Scholar 

  31. Campbell A, Stevinson C, Crank H (2012) The BASES Expert Statement on exercise and cancer survivorship. J Sports Sci 30:949–952. https://doi.org/10.1080/02640414.2012.671953

    Article  PubMed  Google Scholar 

  32. Schmitz KH et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42:1409–1426. https://doi.org/10.1249/MSS.0b013e3181e0c112

    Article  PubMed  Google Scholar 

  33. Kushi LH, Doyle C, McCullough M, Rock CL, Demark‐Wahnefried W, Bandera EV, Gapstur S, Patel AV, Andrews K, Gansler T (2012), American Cancer Society guidelines on nutrition and physical activity for cancer prevention. CA Cancer J Clin 62:30–67. https://doi.org/10.3322/caac.20140

  34. Segal R et al (2017) Exercise for people with cancer: a clinical practice guideline. Curr Oncol 24:40–46. https://doi.org/10.3747/co.24.3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. American Physical Therapy Association (2016) Guide to physical therapist practice. American Physical Therapy Association, Alexandria

    Google Scholar 

  36. Yelton L, Forbis S (2016) Influences and barriers on physical activity in pediatric oncology patients. Front Pediatr 4:131. https://doi.org/10.3389/fped.2016.00131

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dishman RK, Sallis JF, Orenstein DR (1985) The determinants of physical activity and exercise. Public Health Rep 100:158–171

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shropshire J, Carroll B (1997) Family variables and children’s physical activity: influence of parental exercise and socio-economic status. Sport Educ Soc 2:95–116. https://doi.org/10.1080/1357332970020106

    Article  Google Scholar 

  39. Mishra SI et al (2012) Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev (8):CD008465. https://doi.org/10.1002/14651858.CD008465.pub2

  40. Lipsett A, Barrett S, Haruna F, Mustian K, O’Donovan A (2017) The impact of exercise during adjuvant radiotherapy for breast cancer on fatigue and quality of life: a systematic review and meta-analysis. Breast 32:144–155. https://doi.org/10.1016/j.breast.2017.02.002

    Article  PubMed  Google Scholar 

  41. Sprod LK et al (2012) Exercise and cancer treatment symptoms in 408 newly diagnosed older cancer patients. J Geriatr Oncol 3:90–97. https://doi.org/10.1016/j.jgo.2012.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quinten C et al (2014) A global analysis of multitrial data investigating quality of life and symptoms as prognostic factors for survival in different tumor sites. Cancer 120:302–311. https://doi.org/10.1002/cncr.28382

    Article  PubMed  Google Scholar 

  43. Sweegers MG et al (2019) Effects and moderators of exercise on muscle strength, muscle function and aerobic fitness in patients with cancer: a meta-analysis of individual patient data. Br J Sports Med 53:812–812. https://doi.org/10.1136/bjsports-2018-099191

    Article  PubMed  Google Scholar 

  44. Cave J et al (2018) A systematic review of the safety and efficacy of aerobic exercise during cytotoxic chemotherapy treatment. Support Care Cancer 26:3337–3351. https://doi.org/10.1007/s00520-018-4295-x

    Article  CAS  PubMed  Google Scholar 

  45. Braam KI et al (2016) Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev (4):CD008796. https://doi.org/10.1002/14651858.CD008796.pub3

  46. Bland KA et al (2019) Impact of exercise on chemotherapy completion rate: a systematic review of the evidence and recommendations for future exercise oncology research. Crit Rev Oncol Hematol 136:79–85. https://doi.org/10.1016/j.critrevonc.2019.02.005

    Article  PubMed  Google Scholar 

  47. Schadler KL et al (2016) Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 7:65429–65440. https://doi.org/10.18632/oncotarget.11748

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morrell MBG et al (2019) Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer 66:e27835. https://doi.org/10.1002/pbc.27835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Betof AS et al (2015) Modulation of murine breast tumor vascularity, hypoxia, and chemotherapeutic response by exercise. J Natl Cancer Inst 107:pii: djv040. https://doi.org/10.1093/jnci/djv040

    Article  CAS  Google Scholar 

  50. Behnke BJ, McCullough DJ, Siemann DW, Stabley JN (2014) Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst 106:dju036. https://doi.org/10.1093/jnci/dju036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashcraft KA, Warner AB, Jones LW, Dewhirst MW (2019) Exercise as adjunct therapy in cancer. Semin Radiat Oncol 29:16–24. https://doi.org/10.1016/j.semradonc.2018.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  CAS  PubMed  Google Scholar 

  53. Armstrong GT et al (2014) Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol 32:1218–1227. https://doi.org/10.1200/JCO.2013.51.1055

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hudson MM et al (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA 309:2371–2381. https://doi.org/10.1001/jama.2013.6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ostman C et al (2017) The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol 16:110. https://doi.org/10.1186/s12933-017-0590-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rao S et al (2019) Effect of exercise and pharmacological interventions on visceral adiposity: a systematic review and meta-analysis of long-term randomized controlled trials. Mayo Clin Proc 94:211–224. https://doi.org/10.1016/j.mayocp.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  57. Sharman JE, La Gerche A, Coombes JS (2015) Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens 28:147–158. https://doi.org/10.1093/ajh/hpu191

    Article  PubMed  Google Scholar 

  58. Scott JM et al (2018) Association of exercise with mortality in adult survivors of childhood cancer. JAMA Oncol 4:1352–1358. https://doi.org/10.1001/jamaoncol.2018.2254

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lansing RW, Gracely RH, Banzett RB (2009) The multiple dimensions of dyspnea: review and hypotheses. Respir Physiol Neurobiol 167:53–60. https://doi.org/10.1016/j.resp.2008.07.012

    Article  PubMed  Google Scholar 

  60. Chow EJ et al (2019) Pediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovasc Res 115:922. https://doi.org/10.1093/cvr/cvz031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Children’s Oncology Group (2018) Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers. Children’s Oncology Group, Version 5.0. https://www.survivorshipguidelines.org/

  62. Smith WA et al Exercise training in childhood cancer survivors with subclinical cardiomyopathy who were treated with anthracyclines. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.24850. (2013 Nov 6 [E-pub ahead of print]; https://doi.org/10.1002/pbc.24850)

  63. Krull MR et al (2019) Impact of protein supplementation on lean muscle mass in adult survivors of childhood cancer engaged in resistance training. J Clin Oncol 37:10027

    Article  Google Scholar 

  64. Wampler MA et al (2012) Physical activity among adult survivors of childhood lower-extremity sarcoma. J Cancer Surviv 6:45–53. https://doi.org/10.1007/s11764-011-0187-5

    Article  PubMed  Google Scholar 

  65. Nagarajan R et al (2011) Twenty years of follow-up of survivors of childhood osteosarcoma: a report from the Childhood Cancer Survivor Study. Cancer 117:625–634. https://doi.org/10.1002/cncr.25446

    Article  PubMed  Google Scholar 

  66. Nicholson HS, Mulvihill JJ, Byrne J (1992) Late effects of therapy in adult survivors of osteosarcoma and Ewing’s sarcoma. Med Pediatr Oncol 20:6–12

    Article  CAS  PubMed  Google Scholar 

  67. Ferioli M et al (2018) Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget 9:14005–14034. https://doi.org/10.18632/oncotarget.24456

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sloof N, Hendershot E, Griffin M, Anderson L, Marjerrison S (2019) The impact of physical activity on the health of young adult survivors of childhood cancer: an exploratory analysis. J Adolesc Young Adult Oncol 8:602–609. https://doi.org/10.1089/jayao.2019.0001

    Article  PubMed  Google Scholar 

  69. Fong DY et al (2012) Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ 344:e70. https://doi.org/10.1136/bmj.e70

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schmitz KH et al (2005) Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 14:1588–1595. https://doi.org/10.1158/1055-9965.EPI-04-0703

    Article  Google Scholar 

  71. Stevinson C, Lawlor DA, Fox KR (2004) Exercise interventions for cancer patients: systematic review of controlled trials. Cancer Causes Control 15:1035–1056

    Article  PubMed  Google Scholar 

  72. Sabiston CM, Brunet J (2011) Reviewing the benefits of physical activity during cancer survivorship. Am J Lifestyle Med 6:167–177. https://doi.org/10.1177/1559827611407023

    Article  Google Scholar 

  73. Almstedt HC et al (2016) Combined aerobic and resistance training improves bone health of female cancer survivors. Bone Rep 5:274–279. https://doi.org/10.1016/j.bonr.2016.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  74. Grande AJ, Silva V, Maddocks M (2015) Exercise for cancer cachexia in adults: executive summary of a cochrane collaboration systematic review. J Cachexia Sarcopenia Muscle 6:208–211. https://doi.org/10.1002/jcsm.12055

    Article  PubMed  PubMed Central  Google Scholar 

  75. Visovsky C (2006) Muscle strength, body composition, and physical activity in women receiving chemotherapy for breast cancer. Integr Cancer Ther 5:183–191. https://doi.org/10.1177/1534735406291962

    Article  PubMed  Google Scholar 

  76. Nelson NL (2016) Breast cancer-related lymphedema and resistance exercise: a systematic review. J Strength Cond Res 30:2656–2665. https://doi.org/10.1519/JSC.0000000000001355

    Article  PubMed  Google Scholar 

  77. Wonders K (2014) The effect of supervised exercise training on symptoms of chemotherapy-induced peripheral neuropathy. Int J Phys Med Rehabil 2:1–5

    Article  Google Scholar 

  78. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R (2007) Exercise training manages cardiopulmonary function and fatigue during and following cancer treatment in male cancer survivors. Integr Cancer Ther 6:235–241. https://doi.org/10.1177/1534735407305871

    Article  PubMed  Google Scholar 

  79. Brown JC et al (2011) Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: a meta-analysis. Cancer Epidemiol Biomark Prev 20:123. https://doi.org/10.1158/1055-9965.EPI-10-0988

    Article  Google Scholar 

  80. Craft LL, Vaniterson EH, Helenowski IB, Rademaker AW, Courneya KS (2012) Exercise effects on depressive symptoms in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 21:3–19. https://doi.org/10.1158/1055-9965.EPI-11-0634

    Article  Google Scholar 

  81. Kessels E, Husson O, van der Feltz-Cornelis CM (2018) The effect of exercise on cancer-related fatigue in cancer survivors: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 14:479–494. https://doi.org/10.2147/NDT.S150464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mustian KM et al (2017) Comparison of pharmaceutical, psychological, and exercise treatments for cancer-related fatigue: a meta-analysis. JAMA Oncol 3:961–968. https://doi.org/10.1001/jamaoncol.2016.6914

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gilchrist SC et al (2019) Short-term changes in cardiac function in osteosarcoma patients receiving anthracyclines. J Adolesc Young Adult Oncol 8:385–386. https://doi.org/10.1089/jayao.2018.0141

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schwartz RG et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118. https://doi.org/10.1016/0002-9343(87)90212-9

    Article  CAS  PubMed  Google Scholar 

  85. Evangelista LS et al (2008) Correlates of fatigue in patients with heart failure. Prog Cardiovasc Nurs 23:12–17

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang F et al (2018) Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity. J Pediatr Hematol Oncol 40:208–215. https://doi.org/10.1097/mph.0000000000001112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cormie P, Zopf EM, Zhang X, Schmitz KH (2017) The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev 39:71–92. https://doi.org/10.1093/epirev/mxx007

    Article  PubMed  Google Scholar 

  88. Gerritsen JK, Vincent AJ (2016) Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 50:796–803. https://doi.org/10.1136/bjsports-2015-094787

    Article  PubMed  Google Scholar 

  89. Fairey AS et al (2003) Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomark Prev 12:721–727

    CAS  Google Scholar 

  90. Irwin ML et al (2009) Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol Biomark Prev 18:306–313. https://doi.org/10.1158/1055-9965.EPI-08-0531

    Article  CAS  Google Scholar 

  91. Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD (2005) Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiol Biomark Prev 14:1204–1211. https://doi.org/10.1158/1055-9965.EPI-04-0695

    Article  CAS  Google Scholar 

  92. Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev 14:1672–1680. https://doi.org/10.1158/1055-9965.EPI-04-0736

    Article  CAS  Google Scholar 

  93. Trojian TH, Mody K, Chain P (2007) Exercise and colon cancer: primary and secondary prevention. Curr Sports Med Rep 6:120–124

    PubMed  Google Scholar 

  94. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293:2479–2486. https://doi.org/10.1001/jama.293.20.2479

    Article  CAS  PubMed  Google Scholar 

  95. Li Y-S, Liu Q, He H-B, Luo W (2019) The possible role of insulin-like growth factor-1 in osteosarcoma. Curr Probl Cancer 43:228–235. https://doi.org/10.1016/j.currproblcancer.2018.08.008

    Article  PubMed  Google Scholar 

  96. Fairey AS, Courneya KS, Field CJ, Mackey JR (2002) Physical exercise and immune system function in cancer survivors: a comprehensive review and future directions. Cancer 94:539–551. https://doi.org/10.1002/cncr.10244

    Article  PubMed  Google Scholar 

  97. Woods JA, Davis JM, Smith JA, Nieman DC (1999) Exercise and cellular innate immune function. Med Sci Sports Exerc 31:57–66

    Article  CAS  PubMed  Google Scholar 

  98. Blair CK et al (2014) Light-intensity activity attenuates functional decline in older cancer survivors. Med Sci Sports Exerc 46:1375–1383. https://doi.org/10.1249/mss.0000000000000241

    Article  PubMed  PubMed Central  Google Scholar 

  99. Thraen-Borowski KM, Trentham-Dietz A, Edwards DF, Koltyn KF, Colbert LH (2013) Dose-response relationships between physical activity, social participation, and health-related quality of life in colorectal cancer survivors. J Cancer Surviv 7:369–378. https://doi.org/10.1007/s11764-013-0277-7

    Article  PubMed  PubMed Central  Google Scholar 

  100. Van Roekel EH et al (2015) Light physical activity is associated with quality of life after colorectal cancer. Med Sci Sports Exerc 47:2493–2503. https://doi.org/10.1249/mss.0000000000000698

    Article  PubMed  Google Scholar 

  101. Loprinzi PD (2013) Objectively measured light and moderate-to-vigorous physical activity is associated with lower depression levels among older US adults. Aging Ment Health 17:801–805. https://doi.org/10.1080/13607863.2013.801066

    Article  PubMed  Google Scholar 

  102. Healy GN et al (2007) Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care 30:1384–1389. https://doi.org/10.2337/dc07-0114

    Article  CAS  PubMed  Google Scholar 

  103. Buman MP et al (2010) Objective light-intensity physical activity associations with rated health in older adults. Am J Epidemiol 172:1155–1165. https://doi.org/10.1093/aje/kwq249

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keri L. Schadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, M.B., Ness, K.K., Schadler, K.L. (2020). Exercise and Physical Activity in Patients with Osteosarcoma and Survivors. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_16

Download citation

Publish with us

Policies and ethics