Skip to main content

Nanocapsule Delivery of IL-12

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

Interleukin(IL)-12 is a protein that activates T cells and macrophages to kill tumor cells. However, despite this cytokine showing strong antitumor activity in preclinical settings, translation to patients has been slowed by toxic side effects, poor distribution to peripheral tissues, and improper dosing regimens. Osteosarcoma (OS) is an aggressive primary tumor of bone that has shown particular responsiveness to recombinant (r)IL-12 in preclinical models. Poly(lactic-co-glycolic) acid (PLGA) nanospheres, an FDA-approved drug delivery vector, may be a viable delivery vector for transporting biologically active IL-12 to tissues without disturbing normal homeostasis. In this chapter, we explore the potential for using IL-12-loaded nanospheres (IL-12-NS, <1 μm in diameter) to treat cancer, describe the synthesis process, and examine a typical protein release profile while providing insight and future directions of nanoscale tumor immunotherapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ et al (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 153(4):1697–1706

    CAS  PubMed  Google Scholar 

  2. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178(4):1223–1230

    CAS  PubMed  Google Scholar 

  3. Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13(1):251–276

    CAS  PubMed  Google Scholar 

  4. Cavallo F, Di Carlo E, Butera M, Verrua R, Colombo MP, Musiani P, Forni G (1999) Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res 59(2):414–421

    CAS  PubMed  Google Scholar 

  5. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, Romagnani S (1993) Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177(4):1199–1204

    CAS  PubMed  Google Scholar 

  6. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13(1):453–461

    CAS  PubMed  Google Scholar 

  7. Gately MK, Warrier RR, Honasoge S, Carvajal DM, Faherty DA, Connaughton SE et al (1994) Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-γ in vivo. Int Immunol 6(1):157–167

    CAS  PubMed  Google Scholar 

  8. Pearce EL, Shen H (2007) Generation of CD8 T cell memory is regulated by IL-12. J Immunol 179(4):2074–2081

    CAS  PubMed  Google Scholar 

  9. Jacobson NG, Szabo SJ, Weber-Nordt RM, Zhong Z, Schreiber RD, Darnell JE, Murphy KM (1995) Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat) 3 and Stat4. J Exp Med 181(5):1755–1762

    CAS  PubMed  Google Scholar 

  10. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586

    CAS  PubMed  Google Scholar 

  11. Kuijjer ML, Hogendoorn PC, Cleton-Jansen AM (2013) Genome-wide analyses on high-grade osteosarcoma: making sense of a genomically most unstable tumor. Int J Cancer 133(11):2512–2521

    CAS  PubMed  Google Scholar 

  12. Rathe SK, Popescu FE, Johnson JE, Watson AL, Marko TA, Moriarity BS et al (2019) Identification of candidate neoantigens produced by fusion transcripts in human osteosarcomas. Sci Rep 9(1):358

    PubMed  PubMed Central  Google Scholar 

  13. Wang J, Nong L, Wei Y, Qin S, Zhou Y, Tang Y (2013) Association of interleukin-12 polymorphisms and serum IL-12p40 levels with osteosarcoma risk. DNA Cell Biol 32(10):605–610

    PubMed  Google Scholar 

  14. Lafleur EA, Jia SF, Worth LL, Zhou Z, Owen-Schaub LB, Kleinerman ES (2001) Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res 61(10):4066–4071

    CAS  PubMed  Google Scholar 

  15. Worth LL, Lafleur EA, Jia SF, Kleinerman ES (2002) Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep 9(4):823–827

    CAS  PubMed  Google Scholar 

  16. Lafleur EA, Koshkina NV, Stewart J, Jia SF, Worth LL, Duan X, Kleinerman ES (2004) Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 10(23):8114–8119

    CAS  PubMed  Google Scholar 

  17. Jia SF, Worth LL, Densmore CL, Xu B, Duan X, Kleinerman ES (2003) Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res 9(9):3462–3468

    CAS  PubMed  Google Scholar 

  18. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889

    CAS  PubMed  Google Scholar 

  19. Sousa S, Määttä J (2016) The role of tumour-associated macrophages in bone metastasis. J Bone Oncol 5(3):135–138

    PubMed  PubMed Central  Google Scholar 

  20. Ando K, Mori K, Corradini N, Redini F, Heymann D (2011) Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin Pharmacother 12(2):285–292

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dumars C, Ngyuen JM, Gaultier A, Lanel R, Corradini N, Gouin F et al (2016) Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget 7(48):78343

    PubMed  PubMed Central  Google Scholar 

  22. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS et al (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3(3):409–417

    CAS  PubMed  Google Scholar 

  23. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al (1997) Effects of single-dose interleukin-12 exposure on interleukin-12–associated toxicity and interferon-γ production. Blood 90(7):2541–2548

    CAS  PubMed  Google Scholar 

  24. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685

    PubMed  Google Scholar 

  25. Younes A, Pro B, Robertson MJ, Flinn IW, Romaguera JE, Hagemeister F et al (2004) Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin Cancer Res 10(16):5432–5438

    CAS  PubMed  Google Scholar 

  26. Wadler S, Levy D, Frederickson HL, Falkson CI, Wang Y, Weller E et al (2004) A phase II trial of interleukin-12 in patients with advanced cervical cancer: clinical and immunologic correlates: Eastern Cooperative Oncology Group study E1E96. Gynecol Oncol 92(3):957–964

    CAS  PubMed  Google Scholar 

  27. Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, Clancy M, Atkins MB (2000) Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin Cancer Res 6(5):1678–1692

    CAS  PubMed  Google Scholar 

  28. Motzer RJ, Rakhit A, Schwartz LH, Olencki T, Malone TM, Sandstrom K et al (1998) Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res 4(5):1183–1191

    CAS  PubMed  Google Scholar 

  29. Bajetta E, Del Vecchio M, Mortarini R, Nadeau R, Rakhit A, Rimassa L et al (1998) Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin Cancer Res 4(1):75–85

    CAS  PubMed  Google Scholar 

  30. Motzer RJ, Rakhit A, Thompson JA, Nemunaitis J, Murphy BA, Ellerhorst J et al (2001) Randomized multicenter phase II trial of subcutaneous recombinant human interleukin-12 versus interferon-α2a for patients with advanced renal cell carcinoma. J Interf Cytokine Res 21(4):257–263

    CAS  Google Scholar 

  31. Lenzi R, Rosenblum M, Verschraegen C, Kudelka AP, Kavanagh JJ, Hicks ME et al (2002) Phase I study of intraperitoneal recombinant human interleukin 12 in patients with Müllerian carcinoma, gastrointestinal primary malignancies, and mesothelioma. Clin Cancer Res 8(12):3686–3695

    CAS  PubMed  Google Scholar 

  32. Weiss GR, O’Donnell MA, Loughlin K, Zonno K, Laliberte RJ, Sherman ML (2003) Phase 1 study of the intravesical administration of recombinant human interleukin-12 in patients with recurrent superficial transitional cell carcinoma of the bladder. J Immunother 26(4):343–348

    CAS  PubMed  Google Scholar 

  33. Lenzi R, Edwards R, June C, Seiden MV, Garcia ME, Rosenblum M, Freedman RS (2007) Phase II study of intraperitoneal recombinant interleukin-12 (rhIL-12) in patients with peritoneal carcinomatosis (residual disease < 1 cm) associated with ovarian cancer or primary peritoneal carcinoma. J Transl Med 5(1):66

    PubMed  PubMed Central  Google Scholar 

  34. Ansell SM, Geyer SM, Maurer MJ, Kurtin PJ, Micallef IN, Stella P et al (2006) Randomized phase II study of interleukin-12 in combination with rituximab in previously treated non-Hodgkin’s lymphoma patients. Clin Cancer Res 12(20):6056–6063

    CAS  PubMed  Google Scholar 

  35. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ et al (2012) IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122(4):1271–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Markel JE, Noore J, Emery EJ, Bobnar HJ, Kleinerman ES, Lindsey BA (2018) Using the spleen as an in vivo systemic immune barometer alongside osteosarcoma disease progression and immunotherapy with α-PD-L1. Sarcoma 2018:8694397

    PubMed  PubMed Central  Google Scholar 

  37. Eckert F, Jelas I, Oehme M, Huber SM, Sonntag K, Welker C et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Onco Targets Ther 6(6):e1323161

    Google Scholar 

  38. Wang P, Li X, Wang J, Gao D, Li Y, Li H et al (2017) Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun 8(1):1395

    PubMed  PubMed Central  Google Scholar 

  39. Afonso LC, Scharton TM, Vieira LQ, Wysocka M, Trinchieri G, Scott P (1994) The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263(5144):235–237

    CAS  PubMed  Google Scholar 

  40. Liebau C, Baltzer AW, Schmidt S, Roesel C, Karreman C, Prisack JB et al (2002) Interleukin-12 and interleukin-18 induce indoleamine 2, 3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma. Anticancer Res 22(2A):931–936

    CAS  PubMed  Google Scholar 

  41. Zitvogel L, Tahara H, Robbins PD, Storkus WJ, Clarke MR, Nalesnik MA, Lotze MT (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J Immunol 155(3):1393–1403

    CAS  PubMed  Google Scholar 

  42. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H (1999) Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 59(16):4035–4041

    CAS  PubMed  Google Scholar 

  43. Ryu CH, Park SH, Park SA, Kim SM, Lim JY, Jeong CH et al (2011) Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22(6):733–743

    CAS  PubMed  Google Scholar 

  44. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z et al (2010) Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70(17):6725–6734

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chmielewski M, Abken H (2012) CAR T cells transform to trucks: chimeric antigen receptor–redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 61(8):1269–1277

    CAS  PubMed  Google Scholar 

  46. Liebau C, Roesel C, Schmidt S, Karreman C, Prisack JB, Bojar H et al (2004) Immunotherapy by gene transfer with plasmids encoding IL-12/IL-18 is superior to IL-23/IL-18 gene transfer in a rat osteosarcoma model. Anticancer Res 24(5A):2861–2867

    CAS  PubMed  Google Scholar 

  47. Dohnal AM, Witt V, Hügel H, Holter W, Gadner H, Felzmann T (2007) Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 9(8):755–770

    CAS  PubMed  Google Scholar 

  48. Kuriakose MA, Chen FA, Egilmez NK, Jong YS, Mathiowitz E, DeLacure MD et al (2000) Interleukin-12 delivered by biodegradable microspheres promotes the antitumor activity of human peripheral blood lymphocytes in a human head and neck tumor xenograft/SCID mouse model. Head Neck 22(1):57–63

    CAS  PubMed  Google Scholar 

  49. Egilmez NK, Jong YS, Sabel MS, Jacob JS, Mathiowitz E, Bankert RB (2000) In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res 60(14):3832–3837

    CAS  PubMed  Google Scholar 

  50. Sabel MS, Skitzki J, Stoolman L, Egilmez NK, Mathiowitz E, Bailey N et al (2004) Intratumoral IL-12 and TNF-α–loaded microspheres lead to regression of breast cancer and systemic antitumor immunity. Ann Surg Oncol 11(2):147–156

    PubMed  Google Scholar 

  51. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120(1–2):18–26

    CAS  PubMed  Google Scholar 

  52. Manoochehri S, Darvishi B, Kamalinia G, Amini M, Fallah M, Ostad SN et al (2013) Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru 21(1):58

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW et al (2009) Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 98(3):970–984

    CAS  PubMed  Google Scholar 

  54. Cohen J (1995) IL-12 deaths: explanation and a puzzle. Science 270(5238):908–909

    CAS  PubMed  Google Scholar 

  55. Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T (2007) Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 334(1–2):137–148

    CAS  PubMed  Google Scholar 

  56. Gasparini G, Kosvintsev SR, Stillwell MT, Holdich RG (2008) Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification. Colloids Surf B: Biointerfaces 61(2):199–207

    CAS  PubMed  Google Scholar 

  57. Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TRR, Mallikarjun C (2008) Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J Pharm Sci 70(3):303

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pistel KF, Kissel T (2000) Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J Microencapsul 17(4):467–483

    CAS  PubMed  Google Scholar 

  59. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168(3):487–502

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brock A. Lindsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markel, J.E., Lacinski, R.A., Lindsey, B.A. (2020). Nanocapsule Delivery of IL-12. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_13

Download citation

Publish with us

Policies and ethics