Skip to main content

Natural Killer Cell Immunotherapy for Osteosarcoma

  • Chapter
  • First Online:
Book cover Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that have the ability to recognize malignant cells through balanced recognition of cell-surface indicators of stress and danger. Once activated through such recognition, NK cells release cytokines and induce target cell lysis through multiple mechanisms. NK cells are increasingly recognized for their role in controlling tumor progression and metastasis and as important mediators of immunotherapeutic modalities such as cytokines, antibodies, immunomodulating drugs, and stem cell transplantation. Recent advances in manipulating NK cell number, function, and genetic modification have caused renewed interest in their potential for adoptive immunotherapies, which are actively being tested in clinical trials. Here, we summarize the evidence for NK cell recognition of osteosarcoma, discuss immune therapies that are directly or indirectly dependent on NK cell function, and describe potential approaches for manipulating NK cell number and function to enhance therapy against osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittari G, Fregni G, Roguet L, Garcia A, Vataire AL, Wittnebel S, Amsellem S, Chouaib S, Bourhis JH, Caignard A (2010) Early evaluation of natural killer activity in post-transplant acute myeloid leukemia patients. Bone Marrow Transplant 45(5):862–871. bmt2009265 [pii]. https://doi.org/10.1038/bmt.2009.265

    Article  CAS  PubMed  Google Scholar 

  2. Cheent K, Khakoo SI (2009) Natural killer cells: integrating diversity with function. Immunology 126(4):449–457. https://doi.org/10.1111/j.1365-2567.2009.03045.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580. https://doi.org/10.1038/nri2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee DA (2019) Cellular therapy: adoptive immunotherapy with expanded natural killer cells. Immunol Rev 290(1):85–99. https://doi.org/10.1111/imr.12793

    Article  CAS  PubMed  Google Scholar 

  5. Kannan GS, Aquino-Lopez A, Lee DA (2017) Natural killer cells in malignant hematology: a primer for the non-immunologist. Blood Rev 31(2):1–10. https://doi.org/10.1016/j.blre.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  6. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  Google Scholar 

  7. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223. 19/1/197 [pii]. https://doi.org/10.1146/annurev.immunol.19.1.197

    Article  CAS  PubMed  Google Scholar 

  8. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224. https://doi.org/10.1038/icb.2010.78

    Article  PubMed  Google Scholar 

  9. Aquino-Lopez A, Senyukov VV, Vlasic Z, Kleinerman ES, Lee DA (2017) Interferon gamma induces changes in natural killer (NK) cell ligand expression and alters NK cell-mediated lysis of pediatric cancer cell lines. Front Immunol 8:391. https://doi.org/10.3389/fimmu.2017.00391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763

    Article  CAS  Google Scholar 

  11. McQueen KL, Dorighi KM, Guethlein LA, Wong R, Sanjanwala B, Parham P (2007) Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum Immunol 68(5):309–323. https://doi.org/10.1016/j.humimm.2007.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ljunggren HG, Karre K (1990) In search of the ʻmissing selfʼ: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  CAS  Google Scholar 

  13. Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20(3):123–137. S0268-960X(05)00055-X [pii]. https://doi.org/10.1016/j.blre.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Browne KA, Blink E, Sutton VR, Froelich CJ, Jans DA, Trapani JA (1999) Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol Cell Biol 19(12):8604–8615

    Article  CAS  Google Scholar 

  15. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188(12):2375–2380

    Article  CAS  Google Scholar 

  16. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163(4):1906–1913

    CAS  PubMed  Google Scholar 

  17. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193(6):661–670

    Article  CAS  Google Scholar 

  18. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214(2):194–200. https://doi.org/10.1006/cimm.2001.1896

    Article  CAS  PubMed  Google Scholar 

  19. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861. https://doi.org/10.1038/nrc928

    Article  CAS  PubMed  Google Scholar 

  20. Buddingh EP, Schilham MW, Ruslan SE, Berghuis D, Szuhai K, Suurmond J, Taminiau AH, Gelderblom H, Egeler RM, Serra M, Hogendoorn PC, Lankester AC (2011) Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother 60(4):575–586. https://doi.org/10.1007/s00262-010-0965-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buddingh EP, Ruslan SE, Berghuis D, Gelderblom H, Anninga JK, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients. Cancer Immunol Immunother 61(6):941–947. https://doi.org/10.1007/s00262-012-1232-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markiewicz K, Zeman K, Kozar A, Golebiowska-Wawrzyniak M, Wozniak W (2012) Evaluation of selected parameters of cellular immunity in children with osteosarcoma at diagnosis. Med Wieku Rozwoj 16(3):212–221

    PubMed  Google Scholar 

  23. Moore C, Eslin D, Levy A, Roberson J, Giusti V, Sutphin R (2010) Prognostic significance of early lymphocyte recovery in pediatric osteosarcoma. Pediatr Blood Cancer 55(6):1096–1102. https://doi.org/10.1002/pbc.22673

    Article  PubMed  Google Scholar 

  24. Luksch R, Perotti D, Cefalo G, Gambacorti Passerini C, Massimino M, Spreafico F, Casanova M, Ferrari A, Terenziani M, Polastri D, Gambirasio F, Podda M, Bozzi F, Ravagnani F, Parmiani G, Fossati Bellani F (2003) Immunomodulation in a treatment program including pre- and post-operative interleukin-2 and chemotherapy for childhood osteosarcoma. Tumori 89(3):263–268

    Article  CAS  Google Scholar 

  25. Koirala P, Roth ME, Gill J, Piperdi S, Chinai JM, Geller DS, Hoang BH, Park A, Fremed MA, Zang X, Gorlick R (2016) Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep 6:30093. https://doi.org/10.1038/srep30093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X, Zhang W, Xu P (2018) NK cell and macrophages confer prognosis and reflect immune status in osteosarcoma. J Cell Biochem. https://doi.org/10.1002/jcb.28167

  27. Delgado D, Webster DE, DeSantes KB, Durkin ET, Shaaban AF (2010) KIR receptor-ligand incompatibility predicts killing of osteosarcoma cell lines by allogeneic NK cells. Pediatr Blood Cancer 55(7):1300–1305. https://doi.org/10.1002/pbc.22665

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada T, Yamashita T, Sato N (2006) Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci 97(12):1374–1380. CAS317 [pii]. https://doi.org/10.1111/j.1349-7006.2006.00317.x

    Article  CAS  PubMed  Google Scholar 

  29. Chong AS, Boussy IA, Jiang XL, Lamas M, Graf LH Jr (1994) CD54/ICAM-1 is a costimulator of NK cell-mediated cytotoxicity. Cell Immunol 157(1):92–105. S0008-8749(84)71208-1 [pii]. https://doi.org/10.1006/cimm.1994.1208

    Article  CAS  PubMed  Google Scholar 

  30. Tarozzi A, Mariani E, Facchini A (1995) In vitro cytolytic activity of human NK cells against osteosarcoma cell lines. Boll Soc Ital Biol Sper 71(7–8):221–226

    CAS  PubMed  Google Scholar 

  31. Mariani E, Tarozzi A, Meneghetti A, Cattini L, Facchini A (1998) TNF-alpha but not IL-1 and IL-6 modifies the susceptibility of human osteosarcoma cells to NK lysis. Int J Oncol 13(2):349–353

    CAS  PubMed  Google Scholar 

  32. Mariani E, Tarozzi A, Meneghetti A, Cattini L, Facchini A (1997) Human osteosarcoma cell susceptibility to natural killer cell lysis depends on CD54 and increases after TNF alpha incubation. FEBS Lett 406(1–2):83–88

    Article  CAS  Google Scholar 

  33. Meneghetti A, Mariani E, Santi S, Riccio M, Cattini L, Paoletti S, Facchini A (1999) NK binding capacity and lytic activity depend on the expression of ICAM-1 on target bone tumours. Int J Oncol 15(5):909–914

    CAS  PubMed  Google Scholar 

  34. Zamai L, Zauli G, Bavelloni A, Marmiroli S, Cataldi A, Weber G, Vitale M (1995) Tiazofurin induces a down-modulation of ICAM-1 expression on K562 target cells impairing NK adhesion and killing. Cell Immunol 164(1):100–104. S0008-8749(85)71147-1 [pii]. https://doi.org/10.1006/cimm.1995.1147

    Article  CAS  PubMed  Google Scholar 

  35. Xiao P, Xue L, Che LH, Peng JJ, Wu HX, Li Y, Qiao H (2008) Expression and roles of MICA in human osteosarcoma. Histopathology 52(5):640–642. https://doi.org/10.1111/j.1365-2559.2008.02989.x. HIS2989 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Zhu S, Denman CJ, Cobanoglu ZS, Kiany S, Lau CC, Gottschalk SM, Hughes DPM, Kleinerman ES, Lee DA (2015) The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of sarcoma. Pharmacol Res 32(3):779–792

    Article  CAS  Google Scholar 

  37. Honorati MC, Neri S, Cattini L, Facchini A (2003) IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin Exp Immunol 133(3):344–349

    Article  CAS  Google Scholar 

  38. Zhu Y, Huang B, Shi J (2016) Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target. Oncotarget 7(30):47163–47172. https://doi.org/10.18632/oncotarget.9980

    Article  PubMed  PubMed Central  Google Scholar 

  39. Somanchi SS, McCulley KJ, Somanchi A, Chan LL, Lee DA (2015) A novel method for assessment of natural killer cell cytotoxicity using image cytometry. PLoS One 10(10):e0141074. https://doi.org/10.1371/journal.pone.0141074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernandez L, Valentin J, Zalacain M, Leung W, Patino-Garcia A, Perez-Martinez A (2015) Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett 368(1):54–63. https://doi.org/10.1016/j.canlet.2015.07.042

    Article  CAS  PubMed  Google Scholar 

  41. Pahl JH, Ruslan SE, Kwappenberg KM, van Ostaijen-Ten Dam MM, van Tol MJ, Lankester AC, Schilham MW (2013) Antibody-dependent cell lysis by NK cells is preserved after sarcoma-induced inhibition of NK cell cytotoxicity. Cancer Immunol Immunother 62(7):1235–1247. https://doi.org/10.1007/s00262-013-1406-x

    Article  CAS  PubMed  Google Scholar 

  42. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264. https://doi.org/10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ciurea S, Soebbing D, Rondon G, Cao K, Al-Atrash G, Ahmed S, Popat U, Oran B, Bashir Q, Kebriaei P, Indreshpal K, Rezvani K, Shpall E, Lee D, Champlin R (2018) Interim results of a phase 2 clinical trial using mb-IL21 ex vivo epxanded NK cells to enhance graft versus leukemia effect after haploidentical transplantation. Paper presented at the the 44th annual meeting of the European Society for Blood and Marrow Transplantation: Physicians Oral Session, Lisbon

    Google Scholar 

  44. Foltz JA, Moseman JE, Thakkar A, Chakravarti N, Lee DA (2018) TGFbeta imprinting during activation promotes natural killer cell cytokine hypersecretion. Cancers (Basel) 10(11):423. https://doi.org/10.3390/cancers10110423

    Article  CAS  Google Scholar 

  45. Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27(45):5932–5943. https://doi.org/10.1038/onc.2008.267

    Article  CAS  PubMed  Google Scholar 

  46. Lu SM, Xiao P, Xue L, Che LH, Yang P, Li Y, Qiao H (2008) Prevalent expression of MHC class I chain-related molecule A in human osteosarcoma. Neoplasma 55(3):266–272

    CAS  PubMed  Google Scholar 

  47. Lee JA, Ko Y, Kim DH, Lim JS, Kong CB, Cho WH, Jeon DG, Lee SY, Koh JS (2012) Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma? Cancer Res Treat 44(3):202–209. https://doi.org/10.4143/crt.2012.44.3.202

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res 18(2):432–441. https://doi.org/10.1158/1078-0432.CCR-11-2277

    Article  CAS  PubMed  Google Scholar 

  49. Poon VI, Roth M, Piperdi S, Geller D, Gill J, Rudzinski ER, Hawkins DS, Gorlick R (2015) Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res 5(1):4. https://doi.org/10.1186/s13569-014-0020-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobrenkov K, Ostrovnaya I, Gu J, Cheung IY, Cheung NK (2016) Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer 63(10):1780–1785. https://doi.org/10.1002/pbc.26097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu W, Mao X, Wang W, Chen Y, Li D, Li H, Dou P (2018) Anti-ganglioside GD2 monoclonal antibody synergizes with cisplatin to induce endoplasmic reticulum-associated apoptosis in osteosarcoma cells. Pharmazie 73(2):80–86. https://doi.org/10.1691/ph.2018.7836

    Article  CAS  PubMed  Google Scholar 

  52. Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg H, Hartmann W, Wiendl H, Pankratz S, Meltzer J, Farwick N, Greune L, Fluegge M, Rossig C (2017) Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Onco Targets Ther 6(1):e1250050. https://doi.org/10.1080/2162402X.2016.1250050

    Article  CAS  Google Scholar 

  53. Mariani E, Meneghetti A, Tarozzi A, Cattini L, Facchini A (2000) Interleukin-12 induces efficient lysis of natural killer-sensitive and natural killer-resistant human osteosarcoma cells: the synergistic effect of interleukin-2. Scand J Immunol 51(6):618–625. sji737 [pii]

    Article  CAS  Google Scholar 

  54. Guma SR, Lee DA, Yu L, Gordon N, Hughes D, Stewart J, Wang WL, Kleinerman ES (2013) Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.24801

  55. Liebau C, Merk H, Schmidt S, Roesel C, Karreman C, Prisack JB, Bojar H, Baltzer AW (2002) Interleukin-12 and interleukin-18 change ICAM-I expression, and enhance natural killer cell mediated cytolysis of human osteosarcoma cells. Cytokines Cell Mol Ther 7(4):135–142

    Article  CAS  Google Scholar 

  56. Mills L et al (2005) The role of interferon gamma and NK cells in the eradication of pulmonary osteosarcoma metastases by Il-12. Proc Am Assoc Cancer Res 65(9):1413. (https://cancerres.aacrjournals.org/content/65/9_Supplement/1413.4)

  57. Pelham JM, Gray JD, Flannery GR, Pimm MV, Baldwin RW (1983) Interferon-alpha conjugation to human osteogenic sarcoma monoclonal antibody 791T/36. Cancer Immunol Immunother 15(3):210–216. https://doi.org/10.1007/bf00199167

    Article  CAS  PubMed  Google Scholar 

  58. Flannery GR, Pelham JM, Gray JD, Baldwin RW (1984) Immunomodulation: NK cells activated by interferon-conjugated monoclonal antibody against human osteosarcoma. Eur J Cancer Clin Oncol 20(6):791–798. https://doi.org/10.1016/0277-5379(84)90218-9

    Article  CAS  PubMed  Google Scholar 

  59. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017. 0008-5472.CAN-08-3712 [pii]. https://doi.org/10.1158/0008-5472.CAN-08-3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pillet AH, Bugault F, Theze J, Chakrabarti LA, Rose T (2009) A programmed switch from IL-15- to IL-2-dependent activation in human NK cells. J Immunol 182(10):6267–6277. https://doi.org/10.4049/jimmunol.0801933

    Article  CAS  PubMed  Google Scholar 

  61. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106(1):376–383. 2004-12-4797 [pii]. https://doi.org/10.1182/blood-2004-12-4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mao Y, van Hoef V, Zhang X, Wennerberg E, Lorent J, Witt K, Masvidal L, Liang S, Murray S, Larsson O, Kiessling R, Lundqvist A (2016) IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 128(11):1475–1489. https://doi.org/10.1182/blood-2016-02-698027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17(19):6287–6297. https://doi.org/10.1158/1078-0432.CCR-11-1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guma SR, Lee DA, Ling Y, Gordon N, Kleinerman ES (2014) Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer 61(8):1362–1368. https://doi.org/10.1002/pbc.25019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guma SR, Lee DA, Yu L, Gordon N, Hughes D, Stewart J, Wang WL, Kleinerman ES (2014) Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer 61(4):618–626. https://doi.org/10.1002/pbc.24801

    Article  PubMed  Google Scholar 

  66. Canter RJ, Grossenbacher SK, Foltz JA, Sturgill IR, Park JS, Luna JI, Kent MS, Culp WTN, Chen M, Modiano JF, Monjazeb AM, Lee DA, Murphy WJ (2017) Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first-in-dog clinical trial. J Immunother Cancer 5(1):98. https://doi.org/10.1186/s40425-017-0305-7

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mills L, Huang G, Worth LL (2005) The role of interferon gamma and NK cells in the eradication of pulmonary osteosarcoma metastases by IL-12. AACR Meet Abstr 2005(1):1413-c

    Google Scholar 

  68. Lafleur EA, Jia SF, Worth LL, Zhou Z, Owen-Schaub LB, Kleinerman ES (2001) Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res 61(10):4066–4071

    CAS  PubMed  Google Scholar 

  69. Gordon N, Koshkina NV, Jia SF, Khanna C, Mendoza A, Worth LL, Kleinerman ES (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15 Pt 1):4503–4510. https://doi.org/10.1158/1078-0432.CCR-07-0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kinoshita H, Yoshikawa H, Shiiki K, Hamada Y, Nakajima Y, Tasaka K (2000) Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regulating FLIP-L expression. Int J Cancer 88(6):986–991

    Article  CAS  Google Scholar 

  71. Mirandola P, Sponzilli I, Gobbi G, Marmiroli S, Rinaldi L, Binazzi R, Piccari GG, Ramazzotti G, Gaboardi GC, Cocco L, Vitale M (2006) Anticancer agents sensitize osteosarcoma cells to TNF-related apoptosis-inducing ligand downmodulating IAP family proteins. Int J Oncol 28(1):127–133

    CAS  PubMed  Google Scholar 

  72. Rapkin L, Qayed M, Brill P, Martin M, Clark D, George BA, Olson TA, Wasilewski-Masker K, Alazraki A, Katzenstein HM (2012) Gemcitabine and docetaxel (GEMDOX) for the treatment of relapsed and refractory pediatric sarcomas. Pediatr Blood Cancer 59(5):854–858. https://doi.org/10.1002/pbc.24101

    Article  PubMed  Google Scholar 

  73. Navid F, Willert JR, McCarville MB, Furman W, Watkins A, Roberts W, Daw NC (2008) Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer 113(2):419–425. https://doi.org/10.1002/cncr.23586

    Article  CAS  PubMed  Google Scholar 

  74. Morisaki T, Onishi H, Koya N, Kiyota A, Tanaka H, Umebayashi M, Ogino T, Nagamatsu I, Katano M (2011) Combinatorial cytotoxicity of gemcitabine and cytokine-activated killer cells in hepatocellular carcinoma via the NKG2D-MICA/B system. Anticancer Res 31(7):2505–2510

    CAS  PubMed  Google Scholar 

  75. Okita R, Wolf D, Yasuda K, Maeda A, Yukawa T, Saisho S, Shimizu K, Yamaguchi Y, Oka M, Nakayama E, Lundqvist A, Kiessling R, Seliger B, Nakata M (2015) Contrasting effects of the cytotoxic anticancer drug gemcitabine and the EGFR tyrosine kinase inhibitor gefitinib on NK cell-mediated cytotoxicity via regulation of NKG2D ligand in non-small-cell lung cancer cells. PLoS One 10(10):e0139809. https://doi.org/10.1371/journal.pone.0139809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu X, Rao GS, Groh V, Spies T, Gattuso P, Kaufman HL, Plate J, Prinz RA (2011) Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer 11:194. https://doi.org/10.1186/1471-2407-11-194

    Article  PubMed  PubMed Central  Google Scholar 

  77. Di Modica M, Sfondrini L, Regondi V, Varchetta S, Oliviero B, Mariani G, Bianchi GV, Generali D, Balsari A, Triulzi T, Tagliabue E (2016) Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition. Oncotarget 7(1):255–265. https://doi.org/10.18632/oncotarget.6353

    Article  PubMed  Google Scholar 

  78. Markasz L, Stuber G, Vanherberghen B, Flaberg E, Olah E, Carbone E, Eksborg S, Klein E, Skribek H, Szekely L (2007) Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol Cancer Ther 6(2):644–654

    Article  CAS  Google Scholar 

  79. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128(2):192–203. BJH5286 [pii]. https://doi.org/10.1111/j.1365-2141.2004.05286.x

    Article  CAS  PubMed  Google Scholar 

  80. Fujii H, Trudeau JD, Teachey DT, Fish JD, Grupp SA, Schultz KR, Reid GS (2007) In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 109(5):2008–2013. blood-2006-02-002055 [pii]. https://doi.org/10.1182/blood-2006-02-002055

    Article  CAS  PubMed  Google Scholar 

  81. Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, Jocham D, Ratliff TL, Bohle A (2001) NK cells are essential for effective BCG immunotherapy. Int J Cancer 92(5):697–702. https://doi.org/10.1002/1097-0215(20010601)92:5<697::AID-IJC1245>3.0.CO;2-Z. [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K, Yamada N, Hata M, Nishioka T, Fukunaga S, Futani H, Okamura H, Terada N (2010) Sodium valproate, a histone deacetylase inhibitor, augments the expression of cell-surface NKG2D ligands, MICA/B, without increasing their soluble forms to enhance susceptibility of human osteosarcoma cells to NK cell-mediated cytotoxicity. Oncol Rep 24(6):1621–1627

    Article  CAS  Google Scholar 

  83. Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K, Yamada N, Hata M, Fukunaga S, Futani H, Okamura H, Terada N (2012) Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death. Int J Oncol 41(1):83–91. https://doi.org/10.3892/ijo.2012.1438

    Article  CAS  PubMed  Google Scholar 

  84. Ogbomo H, Michaelis M, Kreuter J, Doerr HW, Cinatl J Jr (2007) Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 581(7):1317–1322

    Article  CAS  Google Scholar 

  85. Kopp LM, Ray A, Denman CJ, Senyukov VS, Somanchi SS, Zhu S, Lee DA (2013) Decitabine has a biphasic effect on natural killer cell viability, phenotype, and function under proliferative conditions. Mol Immunol 54(3–4):296–301. https://doi.org/10.1016/j.molimm.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  86. Rao-Bindal K, Zhou Z, Kleinerman ES (2012) MS-275 sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell Death Dis 3:e369. https://doi.org/10.1038/cddis.2012.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rao-Bindal K, Koshkina NV, Stewart J, Kleinerman ES (2013) The histone deacetylase inhibitor, MS-275 (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 13(4):411–422

    Article  CAS  Google Scholar 

  88. Berg SL, Cairo MS, Russell H, Ayello J, Ingle AM, Lau H, Chen N, Adamson PC, Blaney SM (2011) Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a Childrenʼs Oncology Group Phase I Consortium report. J Clin Oncol 29(3):316–323. https://doi.org/10.1200/JCO.2010.30.8387

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJ, Lee DA, Seeger RC (2013) Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 19(8):2132–2143. https://doi.org/10.1158/1078-0432.CCR-12-1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu L, Parton A, Lu L, Adams M, Schafer P, Bartlett JB (2011) Lenalidomide enhances antibody-dependent cellular cytotoxicity of solid tumor cells in vitro: influence of host immune and tumor markers. Cancer Immunol Immunother 60(1):61–73. https://doi.org/10.1007/s00262-010-0919-9

    Article  CAS  PubMed  Google Scholar 

  91. Talmadge JE, Schneider M, Collins M, Phillips H, Herberman RB, Wiltrout RH (1985) Augmentation of NK cell activity in tissue specific sites by liposomes incorporating MTP-PE. J Immunol 135(2):1477–1483

    CAS  PubMed  Google Scholar 

  92. Kubista B, Trieb K, Blahovec H, Kotz R, Micksche M (2002) Hyperthermia increases the susceptibility of chondro- and osteosarcoma cells to natural killer cell-mediated lysis. Anticancer Res 22(2A):789–792

    CAS  PubMed  Google Scholar 

  93. Yamada N, Yamanegi K, Ohyama H, Hata M, Nakasho K, Futani H, Okamura H, Terada N (2012) Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 41(6):2005–2012. https://doi.org/10.3892/ijo.2012.1630

    Article  CAS  PubMed  Google Scholar 

  94. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43(10):2756–2764. https://doi.org/10.1002/eji.201343448

    Article  CAS  PubMed  Google Scholar 

  95. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12):1563–1570. https://doi.org/10.1016/j.jcyt.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  96. Huang X, Park H, Greene J, Pao J, Mulvey E, Zhou SX, Albert CM, Moy F, Sachdev D, Yee D, Rader C, Hamby CV, Loeb DM, Cairo MS, Zhou X (2015) IGF1R- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One 10(7):e0133152. https://doi.org/10.1371/journal.pone.0133152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D (2013) A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73(6):1777–1786. https://doi.org/10.1158/0008-5472.CAN-12-3558

    Article  CAS  PubMed  Google Scholar 

  98. Torabi A, Amaya CN et al (2017) PD-1 and PD-L1 expression in bone and soft tissue sarcomas. Pathology 49(5):506–513

    Article  CAS  Google Scholar 

  99. Tawbi HA, Burgess M, Bolejack V et al (2017) Pembrolizumab in Advanced soft tissue sarcoma and bone sarcoma (SARC028): a multicenter, two cohort, single arm, open label, phase 2 trial. Lancet Oncol 18(11):1493–1501

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tullius, B.P., Setty, B.A., Lee, D.A. (2020). Natural Killer Cell Immunotherapy for Osteosarcoma. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_12

Download citation

Publish with us

Policies and ethics