Skip to main content

Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s

  • Chapter
  • First Online:
Book cover Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM, Heslop HE, Gottschalk S (2009) Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. MolTher 17(10):1779–1787

    CAS  Google Scholar 

  2. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P, Gottschalk S (2015) Human epidermal growth factor receptor 2 (HER2) – specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33(15):1688–1696. https://doi.org/10.1200/JCO.2014.58.0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ (2018) Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23(7):2130–2141. https://doi.org/10.1016/j.celrep.2018.04.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bajgain P, Tawinwung S, D’Elia L, Sukumaran S, Watanabe N, Hoyos V, Lulla P, Brenner MK, Leen AM, Vera JF (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6(1):34. https://doi.org/10.1186/s40425-018-0347-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bear AS, Morgan RA, Cornetta K, June CH, Binder-Scholl G, Dudley ME, Feldman SA, Rosenberg SA, Shurtleff SA, Rooney CM, Heslop HE, Dotti G (2012) Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements? Mol Ther 20(2):246–249. doi:mt2011288 [pii];https://doi.org/10.1038/mt.2011.288. [doi]

  6. Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM, Gladney WL, Levine BL, Melenhorst JJ, Plesa G, June CH (2018) Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155(1):29–32. https://doi.org/10.1053/j.gastro.2018.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118(1):294–305

    CAS  PubMed  Google Scholar 

  8. Biller BJ, Guth A, Burton JH, Dow SW (2010) Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma. J Vet Intern Med 24(5):1118–1123. doi:JVIM557 [pii];https://doi.org/10.1111/j.1939-1676.2010.0557.x. [doi]

  9. Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99(9):3179–3187

    CAS  PubMed  Google Scholar 

  10. Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A, Sixbey J, Gresik MV, Carrum G, Hudson M, Dilloo D, Gee A, Brenner MK, Rooney CM, Heslop HE (2004) Cytotoxic T lymphocyte therapy for epstein-barr virus+ Hodgkin’s disease. JExpMed 200(12):1623–1633

    CAS  Google Scholar 

  11. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, Khalil M, Wu MF, Huls MH, Chang CC, Gresik MV, Gee AP, Brenner MK, Rooney CM, Heslop HE (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110(8):2838–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, Dakhova O, Carrum G, Ramos CA, Liu H, Wu MF, Marcogliese AN, Barese C, Zu Y, Lee DY, O’Connor O, Gee AP, Brenner MK, Heslop HE, Rooney CM (2018) Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol 36(11):1128–1139. https://doi.org/10.1200/jco.2017.74.3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonifant CL, Szoor A, Torres D, Joseph N, Velasquez MP, Iwahori K, Gaikwad A, Nguyen P, Arber C, Song XT, Redell M, Gottschalk S (2016) CD123-engager T cells as a novel immunotherapeutic for acute myeloid leukemia. Mol Ther 24(9):1615–1626. https://doi.org/10.1038/mt.2016.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonini C, Brenner MK, Heslop HE, Morgan RA (2011) Genetic modification of T cells. Biol Blood Marrow Transpl 17(1 Suppl):S15–S20. doi:S1083-8791(10)00415-5 [pii];https://doi.org/10.1016/j.bbmt.2010.09.019. [doi]

  15. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. doi:https://doi.org/10.1056/NEJMoa1200694. [doi]

  16. Brenner MK, Heslop HE (2010) Adoptive T cell therapy of cancer. Curr Opin Immunol 22(2):251–257

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, King PD, Larson S, Weiss M, Riviere I, Sadelain M (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9(3):279–286

    CAS  PubMed  Google Scholar 

  18. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138. doi:5/177/177ra38 [pii];https://doi.org/10.1126/scitranslmed.3005930. [doi]

  19. Brown CE, Mackall CL (2019) CAR T cell therapy: inroads to response and resistance. Nat Rev Immunol 19(2):73

    CAS  PubMed  Google Scholar 

  20. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106(9):3360–3365

    CAS  PubMed  Google Scholar 

  21. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337

    PubMed  PubMed Central  Google Scholar 

  22. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126(8):3130–3144. https://doi.org/10.1172/JCI83092

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheung NK, Guo HF, Modak S, Cheung IY (2003) Anti-idiotypic antibody facilitates scFv chimeric immune receptor gene transduction and clonal expansion of human lymphocytes for tumor therapy. Hybrid Hybridomics 22(4):209–218. doi:https://doi.org/10.1089/153685903322328938. [doi]

  24. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, Rosenberg SA (2012) Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. ClinCancer Res 18(6):1672–1683. doi:1078-0432.CCR-11-3050 [pii];https://doi.org/10.1158/1078-0432.CCR-11-3050. [doi]

  25. Chinnasamy D, Tran E, Yu Z, Morgan RA, Restifo NP, Rosenberg SA (2013) Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res 73(11):3371–3380. doi:0008-5472.CAN-12-3913 [pii];https://doi.org/10.1158/0008-5472.CAN-12-3913. [doi]

  26. Chmielewski M, Abken H (2012) CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 61(8):1269–1277. doi:https://doi.org/10.1007/s00262-012-1202-z. [doi]

  27. Chmielewski M, Abken H (2017) CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 21(11):3205–3219. https://doi.org/10.1016/j.celrep.2017.11.063

    Article  CAS  PubMed  Google Scholar 

  28. Chmielewski M, Kopecky C, Hombach AA, Abken H (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706. doi:0008-5472.CAN-11-0103 [pii];https://doi.org/10.1158/0008-5472.CAN-11-0103. [doi]

  29. Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, Bailey SR, Boroughs AC, Frigault MJ, Leick MB, Scarfò I, Cetrulo CL, Demehri S, Nahed BV, Cahill DP, Wakimoto H, Curry WT, Carter BS, Maus MV (2019) CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 37(9):1049–1058. https://doi.org/10.1038/s41587-019-0192-1

    Article  CAS  PubMed  Google Scholar 

  30. Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X, Yee C, Robbins PF, Warren EH (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35(2):131–141. https://doi.org/10.1097/CJI.0b013e31824300c7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, Turchetto L, Colombi S, Bernardi M, Peccatori J, Pescarollo A, Servida P, Magnani Z, Perna SK, Valtolina V, Crippa F, Callegaro L, Spoldi E, Crocchiolo R, Fleischhauer K, Ponzoni M, Vago L, Rossini S, Santoro A, Todisco E, Apperley J, Olavarria E, Slavin S, Weissinger EM, Ganser A, Stadler M, Yannaki E, Fassas A, Anagnostopoulos A, Bregni M, Stampino CG, Bruzzi P, Bordignon C (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10(5):489–500

    PubMed  Google Scholar 

  32. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1(4):482–497

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67(8):3898–3903

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, Schiavo R, Secondino S, Frasson C, Perotti C, Moroni M, Locatelli F, Siena S (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol 23(35):8942–8949

    CAS  PubMed  Google Scholar 

  35. Cooper LJ, Al Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A, Chang WC, Gonzalez S, Smith D, Forman SJ, Jensen MC (2005) Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 105(4):1622–1631

    CAS  PubMed  Google Scholar 

  36. Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, Foster AE (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother

    Google Scholar 

  37. Cruz CR, Gerdemann U, Leen AM, Shafer JA, Ku S, Tzou B, Horton TM, Sheehan A, Copeland A, Younes A, Rooney CM, Heslop HE, Bollard CM (2011) Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin Cancer Res 17(22):7058–7066. doi:1078-0432.CCR-11-1873 [pii];https://doi.org/10.1158/1078-0432.CCR-11-1873. [doi]

  38. Curran KJ, Seinstra BA, Nikhamin Y, Yeh R, Usachenko Y, van Leeuwen DG, Purdon T, Pegram HJ, Brentjens RJ (2015) Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther 23(4):769–778. https://doi.org/10.1038/mt.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DeRenzo C, Gottschalk S (2019) Genetic modification strategies to enhance CAR T cell persistence for patients with solid tumors. Front Immunol 10:218

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683. https://doi.org/10.1056/NEJMoa1106152. [doi]

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dobrenkov K, Ostrovnaya I, Gu J, Cheung IY, Cheung NK (2016) Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer 63(10):1780–1785. https://doi.org/10.1002/pbc.26097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Donia M, Fagone P, Nicoletti F, Andersen RS, Hogdall E, Straten PT, Andersen MH, Svane IM (2012) BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 1(9):1476–1483. https://doi.org/10.4161/onci.21940

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dotti G, Savoldo B, Pule M, Straathof KC, Biagi E, Yvon E, Vigouroux S, Brenner MK, Rooney CM (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105(12):4677–4684

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dotti G, Gottschalk S, Savoldo B, Brenner MK (2014) Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257(1):107–126. https://doi.org/10.1111/imr.12131. [doi]

    Article  CAS  PubMed  Google Scholar 

  45. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90(2):720–724

    CAS  PubMed  Google Scholar 

  47. Fernández L, Metais J-Y, Escudero A, Vela M, Valentín J, Vallcorba I, Leivas A, Torres J, Valeri A, Patiño-García A (2017) Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. Clin Cancer Res 23(19):5824–5835

    PubMed  Google Scholar 

  48. Foster AE, Dotti G, Lu A, Khalil M, Brenner MK, Heslop HE, Rooney CM, Bollard CM (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31(5):500–505

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Foster AE, Mahendravada A, Shinners NP, Chang W-C, Crisostomo J, Lu A, Khalil M, Morschl E, Shaw JL, Saha S, Duong MT, Collinson-Pautz MR, Torres DL, Rodriguez T, Pentcheva-Hoang T, Bayle JH, Slawin KM, Spencer DM (2017) Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther 25(9):2176–2188. https://doi.org/10.1016/j.ymthe.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Franchi A, Arganini L, Baroni G, Calzolari A, Capanna R, Campanacci D, Caldora P, Masi L, Brandi ML, Zampi G (1998) Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol 185(3):284–289. doi:10.1002/(SICI)1096-9896(199807)185:3<284::AID-PATH94>3.0.CO;2-Z [pii];https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<284::AID-PATH94>3.0.CO;2-Z. [doi]

  51. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24(1):20

    CAS  Google Scholar 

  52. Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF, Okada H (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098

    CAS  PubMed  Google Scholar 

  53. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145. doi:IMR442 [pii];https://doi.org/10.1111/j.1600-065X.2006.00442.x. [doi]

  54. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V, Lindgren C, Oron AP, Li D, Riddell SR, Park JR, Jensen MC (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25):3322–3331. https://doi.org/10.1182/blood-2017-02-769208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goff SL, Johnson LA, Black MA, Xu H, Zheng Z, Cohen CJ, Morgan RA, Rosenberg SA, Feldman SA (2010) Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunol Immunother 59(10):1551–1560. doi:https://doi.org/10.1007/s00262-010-0882-5. [doi]

  56. Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, Lulla P, Rouce RH, Cabral JM, Ramos CA (2019) CD7 CAR T cells for the therapy of acute myeloid leukemia. Mol Ther 27(1):272–280

    CAS  PubMed  Google Scholar 

  57. Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH, Meyers PA (1999) Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17(9):2781–2788

    CAS  PubMed  Google Scholar 

  58. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. doi:https://doi.org/10.1056/NEJMoa1215134. [doi]

  59. Guedan S, Alemany R (2018) CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge. Front Immunol 9:2460. https://doi.org/10.3389/fimmu.2018.02460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guedan S, Posey AD Jr, Shaw C, Wing A, Da T, Patel PR, McGettigan SE, Casado-Medrano V, Kawalekar OU, Uribe-Herranz M, Song D, Melenhorst JJ, Lacey SF, Scholler J, Keith B, Young RM, June CH (2018) Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3(1). https://doi.org/10.1172/jci.insight.96976

  61. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309-322. doi:S1535-6108(12)00082-7 [pii];https://doi.org/10.1016/j.ccr.2012.02.022. [doi]

  62. Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, Liu H, Wu MF, Mei Z, Gee A, Mehta B, Zhang H, Mahmood N, Tashiro H, Heslop HE, Dotti G, Rooney CM, Brenner MK (2017) CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 25(9):2214–2224. https://doi.org/10.1016/j.ymthe.2017.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hegde M, DeRenzo CC, Zhang H, Mata M, Gerken C, Shree A, Yi Z, Brawley V, Dakhova O, Wu M-F, Liu H, Hicks J, Grilley B, Gee AP, Rooney CM, Brenner MK, Heslop HE, Wels W, Gottschalk S, Ahmed NM (2017) Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma. J Clin Oncol 35(15_suppl):10508–10508. https://doi.org/10.1200/JCO.2017.35.15_suppl.10508

    Article  Google Scholar 

  64. Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, Wang L, Kowolik C, Deng J, Figlin R, Yu H (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70(19):7455–7464

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, Amrolia PJ, Hurwitz JL, Brenner MK, Rooney CM (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Heymann M-F, Lézot F, Heymann D (2019) The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 343:103711. https://doi.org/10.1016/j.cellimm.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  67. Hill JA, Giralt S, Torgerson TR, Lazarus HM (2019) CAR-T – and a side order of IgG, to go? – Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev:100596. https://doi.org/10.1016/j.blre.2019.100596

  68. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:NEJMoa1003466 [pii];https://doi.org/10.1056/NEJMoa1003466. [doi]

  69. Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Pohl C, Abken H (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 58(6):1116–1119

    CAS  PubMed  Google Scholar 

  70. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, Heslop HE, Rooney CM, Brenner MK, Dotti G (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, Zhao Y, June CH (2017) Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep 20(13):3025–3033. https://doi.org/10.1016/j.celrep.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES (2012) Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res 72(1):271–281. doi:0008-5472.CAN-11-2778 [pii];https://doi.org/10.1158/0008-5472.CAN-11-2778. [doi]

  73. Huang X, Park H, Greene J, Pao J, Mulvey E, Zhou SX, Albert CM, Moy F, Sachdev D, Yee D (2015) IGF1R-and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One 10(7):e0133152

    PubMed  PubMed Central  Google Scholar 

  74. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, Datar V, Kebriaei P, Lee DA, Champlin RE, Cooper LJ (2016) Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A 113(48):E7788–E7797. https://doi.org/10.1073/pnas.1610544113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Introna M, Barbui AM, Bambacioni F, Casati C, Gaipa G, Borleri G, Bernasconi S, Barbui T, Golay J, Biondi A, Rambaldi A (2000) Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 11(4):611–620

    CAS  PubMed  Google Scholar 

  77. Iwahori K, Kakarla S, Velasquez MP, Yu F, Yi Z, Gerken C, Song XT, Gottschalk S (2015) Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells. Mol Ther 23(1):171–178. https://doi.org/10.1038/mt.2014.156

    Article  CAS  PubMed  Google Scholar 

  78. Jacobs JF, Brasseur F, H-vdK CA, van de Rakt MW, Figdor CG, Adema GJ, Hoogerbrugge PM, Coulie PG, de Vries IJ (2007) Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer 120(1):67–74

    CAS  PubMed  Google Scholar 

  79. Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, Dyson KA, Grippin AJ, Deleyrolle LP, Zhang W, Rajon DA, Wang QJ, Yang JC, Kresak JL, Sayour EJ, Rahman M, Bova FJ, Lin Z, Mitchell DA, Huang J (2019) CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun 10(1):4016. https://doi.org/10.1038/s41467-019-11869-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636-5646. doi:1078-0432.CCR-13-0458 [pii];https://doi.org/10.1158/1078-0432.CCR-13-0458. [doi]

  81. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3):535–546. doi:blood-2009-03-211714 [pii];https://doi.org/10.1182/blood-2009-03-211714. [doi]

  82. June C, Rosenberg SA, Sadelain M, Weber JS (2012) T-cell therapy at the threshold. Nat Biotechnol 30(7):611–614. doi:nbt.2305 [pii];https://doi.org/10.1038/nbt.2305. [doi]

  83. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365

    CAS  PubMed  Google Scholar 

  84. Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, Gottschalk S (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21(8):1611–1620. doi:mt2013110 [pii];https://doi.org/10.1038/mt.2013.110. [doi]

  85. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73. doi:3/95/95ra73 [pii];https://doi.org/10.1126/scitranslmed.3002842. [doi]

  86. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331. [doi]

    Article  CAS  PubMed  Google Scholar 

  87. Keller MD, Harris K, Hanley P, Abraham A, Davila BJ, Zhang N, Sani G, Lang H, Childs R, Jones R, Bollard C (2019) Hexaviral specific T-cells targeting parainfluenza, CMV, EBV, adenovirus, HHV6 and BKV used for prophylaxis and treatment of viral infections in patients post stem cell transplant. Cytotherapy 21(5, Supplement):S9–S10. https://doi.org/10.1016/j.jcyt.2019.03.564

    Article  Google Scholar 

  88. Kerkar SP, Leonardi AJ, van PN, Zhang L, Yu Z, Crompton JG, Pan JH, Palmer DC, Morgan RA, Rosenberg SA, Restifo NP (2013) Collapse of the tumor stroma is triggered by IL-12 induction of fas. Mol Ther 21(7):1369–1377. doi:mt201358 [pii];https://doi.org/10.1038/mt.2013.58. [doi]

  89. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM, Wang E, Young HA, Murphy PM, Hwu P (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980

    CAS  PubMed  Google Scholar 

  90. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75. doi:nbt.2459 [pii];https://doi.org/10.1038/nbt.2459. [doi]

  92. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720. doi:blood-2011-10-384388 [pii];https://doi.org/10.1182/blood-2011-10-384388. [doi]

  93. Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112(12):4371–4383

    CAS  PubMed  Google Scholar 

  94. Krenciute G, Prinzing BL, Yi Z, Wu MF, Liu H, Dotti G, Balyasnikova IV, Gottschalk S (2017) Transgenic expression of IL15 improves antiglioma activity of IL13Ralpha2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5(7):571–581. https://doi.org/10.1158/2326-6066.CIR-16-0376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    PubMed  Google Scholar 

  96. Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, Powell DJ Jr (2013) Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 1(1):43–53. https://doi.org/10.1158/2326-6066.CIR-13-0008. [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee Y-h, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, Park HJ, Jeong M, Chang SH, Kim B-S, Xiong W, Zang W, Guo L, Liu Y, Dong Z-j, Overwijk WW, Hwu P, Yi Q, Kwak L, Yang Z, Mak TW, Li W, Radvanyi LG, Ni L, Liu D, Dong C (2017) Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res 27(8):1034–1045. https://doi.org/10.1038/cr.2017.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, Gee AP, Brenner MK, Heslop HE, Rooney CM, Bollard CM (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12(10):1160–1166

    CAS  PubMed  Google Scholar 

  99. Leen AM, Rooney CM, Foster AE (2007) Improving T cell therapy for cancer. Annu Rev Immunol 25:243–265

    CAS  PubMed  Google Scholar 

  100. Leen A, Katari U, Keiman J, Rooney C, Brenner M, Vera J (2011) Improved expansion and anti-tumor activity of tumor-specific CTLs using a transgenic chimeric cytokine receptor. Mol Ther 19(S1):S194

    Google Scholar 

  101. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, Kapoor N, Pai SY, Rowley SD, Kebriaei P, Dey BR, Grilley BJ, Gee AP, Brenner MK, Rooney CM, Heslop HE (2013) Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121(26):5113–5123. doi:blood-2013-02-486324 [pii];https://doi.org/10.1182/blood-2013-02-486324. [doi]

  102. Leen AM, Sukumaran S, Watanabe N, Mohammed S, Keirnan J, Yanagisawa R, Anurathapan U, Rendon D, Heslop HE, Rooney CM, Brenner MK, Vera JF (2014) Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol Ther 22(6):1211–1220. doi:mt201447 [pii];https://doi.org/10.1038/mt.2014.47. [doi]

  103. Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131(3):311–322. https://doi.org/10.1182/blood-2017-05-787598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leitner J, Klauser C, Pickl WF, Stockl J, Majdic O, Bardet AF, Kreil DP, Dong C, Yamazaki T, Zlabinger G, Pfistershammer K, Steinberger P (2009) B7-H3 is a potent inhibitor of human T-cell activation: no evidence for B7-H3 and TREML2 interaction. Eur J Immunol 39(7):1754–1764. doi:https://doi.org/10.1002/eji.200839028. [doi]

  105. Li B, Zhu X, Sun L, Yuan L, Zhang J, Li H, Ye Z (2014) Induction of a specific CD8+ T-cell response to cancer/testis antigens by demethylating pre-treatment against osteosarcoma. Oncotarget 5(21):10791–10802. https://doi.org/10.18632/oncotarget.2505

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y, Tompers FD, Cooper ZA, Mbofung RM, Whittington M, Flaherty KT, Woodman SE, Davies MA, Radvanyi LG, Overwijk WW, Lizee G, Hwu P (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403. doi:1078-0432.CCR-12-1626 [pii];https://doi.org/10.1158/1078-0432.CCR-12-1626. [doi]

  107. Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76(6):1578–1590. https://doi.org/10.1158/0008-5472.CAN-15-2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21(6):581–590. https://doi.org/10.1038/nm.3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lou Y, Wang G, Lizee G, Kim GJ, Finkelstein SE, Feng C, Restifo NP, Hwu P (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64(18):6783–6790. https://doi.org/10.1158/0008-5472.CAN-04-1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H, Gee A, Brenner MK, Rooney CM, Heslop HE, Gottschalk S (2010) Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 33(9):983–990

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, Liu H, Wu MF, Gee AP, Mei Z, Rooney CM, Heslop HE, Brenner MK (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056. doi:blood-2011-05-354449 [pii];https://doi.org/10.1182/blood-2011-05-354449. [doi]

  112. Ma Q, Garber HR, Lu S, He H, Tallis E, Ding X, Sergeeva A, Wood MS, Dotti G, Salvado B, Ruisaard K, Clise-Dwyer K, John LS, Rezvani K, Alatrash G, Shpall EJ, Molldrem JJ (2016) A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy 18(8):985–994. https://doi.org/10.1016/j.jcyt.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. MacEwen EG, Pastor J, Kutzke J, Tsan R, Kurzman ID, Thamm DH, Wilson M, Radinsky R (2004) IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma. J Cell Biochem 92(1):77–91

    CAS  PubMed  Google Scholar 

  114. Maher J (2012) Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN Oncol 2012:278093. https://doi.org/10.5402/2012/278093. [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, Sotillo E, Labanieh L, Lee DW, Orentas RJ, Dimitrov DS, Zhu Z, Croix BS, Delaidelli A, Sekunova A, Bonvini E, Mitra SS, Quezado MM, Majeti R, Monje M, Sorensen PHB, Maris JM, Mackall CL (2019) CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25(8):2560–2574. https://doi.org/10.1158/1078-0432.ccr-18-0432

    Article  CAS  PubMed  Google Scholar 

  116. Mamonkin M, Rouce RH, Tashiro H, Brenner MK (2015) A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126(8):983–992. https://doi.org/10.1182/blood-2015-02-629527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marcucci KT, Jadlowsky JK, Hwang W-T, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, Gupta M, Lacey SF, Plesa G, Chew A, Melenhorst JJ, Levine BL, June CH (2018) Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol Ther 26(1):269–279. https://doi.org/10.1016/j.ymthe.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  118. Mata M, Gerken C, Nguyen P, Krenciute G, Spencer DM, Gottschalk S (2017) Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov 7(11):1306–1319. https://doi.org/10.1158/2159-8290.cd-17-0263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. doi:https://doi.org/10.1056/NEJMoa1407222. [doi]

  120. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Maus MV, Linette GP, Stadtmauer EA, Rapoport AP, Levine BL, Emery LA, Litzky L, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennet A, Brewer J, Harper J, Hassan N, Jakobsen BK, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced TCR-engineered T cells against HLA-A1 restricted MAGE-A3 antigen. Mol Ther 21(suppl):S24

    Google Scholar 

  122. Maus MV, Plotkin J, Jakka G, Stewart-Jones G, Rivière I, Merghoub T, Wolchok J, Renner C, Sadelain M (2016) An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol Ther 3:16023. https://doi.org/10.1038/mto.2016.23

    Article  Google Scholar 

  123. McGary EC, Heimberger A, Mills L, Weber K, Thomas GW, Shtivelband M, Lev DC, Bar-Eli M (2003) A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo. Clin Cancer Res 9(17):6560–6566

    CAS  PubMed  Google Scholar 

  124. Mehta GU, Malekzadeh P, Shelton T, White DE, Butman JA, Yang JC, Kammula US, Goff SL, Rosenberg SA, Sherry RM (2018) Outcomes of adoptive cell transfer with tumor-infiltrating lymphocytes for metastatic melanoma patients with and without brain metastases. J Immunother 41(5):241–247. https://doi.org/10.1097/cji.0000000000000223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Modak S, Kramer K, Gultekin SH, Guo HF, Cheung NK (2001) Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res 61(10):4048–4054

    CAS  PubMed  Google Scholar 

  126. Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, Brenner MK, Fisher WE, Leen AM, Vera JF (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 25(1):249–258. https://doi.org/10.1016/j.ymthe.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851. doi:mt201024 [pii];https://doi.org/10.1038/mt.2010.24. [doi]

  129. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151. doi:https://doi.org/10.1097/CJI.0b013e3182829903. [doi]

  130. Morris CD, Gorlick R, Huvos G, Heller G, Meyers PA, Healey JH (2001) Human epidermal growth factor receptor 2 as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat Res 382:59–65

    Google Scholar 

  131. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, Labanieh L, Hulleman E, Woo PJ, Rietberg SP, Vogel H, Monje M, Mackall CL (2018) Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med 24(5):572–579. https://doi.org/10.1038/s41591-018-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Navai SA, Derenzo C, Joseph S, Sanber K, Byrd T, Zhang H, Mata M, Gerken C, Shree A, Mathew PR, Dakhova O, Salsman V, Hicks J, Yi Z, Wu M-F, Wang T, Grilley B, Rooney C, Brenner M, Heslop H, Gee A, Gottschalk S, Ahmed N, Hegde M (2019) Abstract LB-147: administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. Cancer Res 79(13 Supplement):LB-147. https://doi.org/10.1158/1538-7445.am2019-lb-147

    Article  Google Scholar 

  133. Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC (2002) Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 99(10):7009–7014

    CAS  PubMed  Google Scholar 

  134. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, Kato I (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 69(23):9003–9011. doi:0008-5472.CAN-09-1450 [pii];https://doi.org/10.1158/0008-5472.CAN-09-1450. [doi]

  135. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. https://doi.org/10.1084/jem.20030590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pahl JH, Ruslan SEN, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res 18(2):432–441

    CAS  PubMed  Google Scholar 

  137. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg JR, Jensen MC (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833

    CAS  PubMed  Google Scholar 

  138. Park JH, Palomba ML, Batlevi CL, Riviere I, Wang X, Senechal B, Furman RR, Bernal Y, Hall M, Pineda J, Diamonte C, Halton E, Brentjens RJ, Sadelain M (2018a) A phase I first-in-human clinical trial of CD19-targeted 19-28z/4-1BBL “armored” CAR T cells in patients with relapsed or refractory NHL and CLL including richter’s transformation. Blood 132(Suppl 1):224–224. https://doi.org/10.1182/blood-2018-99-117737

    Article  Google Scholar 

  139. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018b) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459. https://doi.org/10.1056/NEJMoa1709919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620-626. doi:mt2010272 [pii];https://doi.org/10.1038/mt.2010.272. [doi]

  141. Paszkiewicz PJ, Fräßle SP, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, Sadelain M, Liu L, Jensen MC, Riddell SR, Busch DH (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126(11):4262–4272. https://doi.org/10.1172/JCI84813

    Article  PubMed  PubMed Central  Google Scholar 

  142. Peggs KS, Quezada SA, Allison JP (2009) Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol 157(1):9–19. doi:CEI3912 [pii];https://doi.org/10.1111/j.1365-2249.2009.03912.x. [doi]

  143. Perna SK, De AB, Pagliara D, Hasan ST, Zhang L, Mahendravada A, Heslop HE, Brenner MK, Rooney CM, Dotti G, Savoldo B (2013) Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 19(1):106–117. doi:1078-0432.CCR-12-2143 [pii];https://doi.org/10.1158/1078-0432.CCR-12-2143. [doi]

  144. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733. https://doi.org/10.1056/NEJMoa1103849. [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    PubMed  PubMed Central  Google Scholar 

  146. Posthumadeboer J, Piersma SR, Pham TV, van Egmond PW, Knol JC, Cleton-Jansen AM, van Geer MA, van Beusechem VW, Kaspers GJ, van Royen BJ, Jimenez CR, Helder MN (2013) Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Br J Cancer 109(8):2142–2154. https://doi.org/10.1038/bjc.2013.578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, S-l T, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558. https://doi.org/10.1038/nature13904

    Article  CAS  PubMed  Google Scholar 

  148. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, Chu V, Paschon DE, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg PD, Holmes MC, Gregory PD, Naldini L, Bonini C (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18(5):807–815. doi:nm.2700 [pii];https://doi.org/10.1038/nm.2700. [doi]

  149. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941

    CAS  PubMed  Google Scholar 

  150. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z, Yvon E, Weiss HL, Liu H, Rooney CM, Heslop HE, Brenner MK (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster AE, Heslop HE, Rooney CM, Brenner MK, Dotti G (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110(8):2793–2802

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. https://doi.org/10.1146/annurev.immunol.25.022106.141609. [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rafiq S, Purdon TJ, Daniyan AF, Koneru M, Dao T, Liu C, Scheinberg DA, Brentjens RJ (2017) Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen. Leukemia 31(8):1788–1797. https://doi.org/10.1038/leu.2016.373

    Article  CAS  PubMed  Google Scholar 

  154. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, Yan S, Xiang J, Ma X, Seshan VE, Hendrickson RC, Liu C, Brentjens RJ (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36:847. https://doi.org/10.1038/nbt.4195. https://www.nature.com/articles/nbt.4195#supplementary-information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rainusso N, Brawley VS, Ghazi A, Hicks MJ, Gottschalk S, Rosen JM, Ahmed N (2012) Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther 19(3):212–217. doi:cgt201183 [pii];https://doi.org/10.1038/cgt.2011.83. [doi]

  156. Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, Mehta B, Zhang H, Dakhova O, Carrum G, Kamble RT, Gee AP, Mei Z, Wu MF, Liu H, Grilley B, Rooney CM, Heslop HE, Brenner MK, Savoldo B, Dotti G (2018) In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell Non-Hodgkin’s lymphomas. Mol Ther 26(12):2727–2737. https://doi.org/10.1016/j.ymthe.2018.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J (2015) NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21(8):914

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. doi:nri3191 [pii];https://doi.org/10.1038/nri3191. [doi]

  159. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumore regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924. doi:JCO.2010.32.2537 [pii];https://doi.org/10.1200/JCO.2010.32.2537. [doi]

  160. Robbins PF, Kassim SH, Tran TLN, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee C-CR, Li YF, El-Gamil M, Rosenberg SA (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1–reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21(5):1019–1027. https://doi.org/10.1158/1078-0432.ccr-14-2708

    Article  CAS  PubMed  Google Scholar 

  161. Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, Espeli M, Kraman M, McKenna B, Wells RJ, Zhao Q, Caballero OL, Larder R, Coll AP, O’Rahilly S, Brindle KM, Teichmann SA, Tuveson DA, Fearon DT (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210(6):1137–1151. doi:jem.20122344 [pii];https://doi.org/10.1084/jem.20122344. [doi]

  162. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rosewell Shaw A, Suzuki M (2018) Oncolytic viruses partner with T-cell therapy for solid tumor treatment. Front Immunol 9:2103–2103. https://doi.org/10.3389/fimmu.2018.02103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rossig C, Bollard CM, Nuchtern JG, Merchant DA, Brenner MK (2001) Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int J Cancer 94(2):228–236

    CAS  PubMed  Google Scholar 

  165. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H, Tobin V, Nguyen DN, Lee MR, Putnam AL, Ferris AL, Chen JW, Schickel JN, Pellerin L, Carmody D, Alkorta-Aranburu G, Del Gaudio D, Matsumoto H, Morell M, Mao Y, Cho M, Quadros RM, Gurumurthy CB, Smith B, Haugwitz M, Hughes SH, Weissman JS, Schumann K, Esensten JH, May AP, Ashworth A, Kupfer GM, Greeley SAW, Bacchetta R, Meffre E, Roncarolo MG, Romberg N, Herold KC, Ribas A, Leonetti MD, Marson A (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559(7714):405–409. https://doi.org/10.1038/s41586-018-0326-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rouleau C, Curiel M, Weber W, Smale R, Kurtzberg L, Mascarello J, Berger C, Wallar G, Bagley R, Honma N, Hasegawa K, Ishida I, Kataoka S, Thurberg BL, Mehraein K, Horten B, Miller G, Teicher BA (2008) Endosialin protein expression and therapeutic target potential in human solid tumors: sarcoma versus carcinoma. Clin Cancer Res 14(22):7223–7236. doi:14/22/7223 [pii];https://doi.org/10.1158/1078-0432.CCR-08-0499. [doi]

  167. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398. doi:2159-8290.CD-12-0548 [pii];https://doi.org/10.1158/2159-8290.CD-12-0548. [doi]

  168. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE, Zhang L, Heslop HE, Brenner MK, Dotti G (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110(7):2620–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z, Liu H, Grilley B, Rooney CM, Heslop HE, Brenner MK, Dotti G (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121(5):1822–1826. doi:46110 [pii];https://doi.org/10.1172/JCI46110. [doi]

  170. Schuberth PC, Jakka G, Jensen SM, Wadle A, Gautschi F, Haley D, Haile S, Mischo A, Held G, Thiel M, Tinguely M, Bifulco CB, Fox BA, Renner C, Petrausch U (2013) Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 20(4):386–395. doi:gt201248 [pii];https://doi.org/10.1038/gt.2012.48. [doi]

  171. Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, Yi Z, Sauer T, Liu D, Parihar R, Castillo P, Liu H, Brenner MK, Metelitsa LS, Gottschalk S, Rooney CM (2017) Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 7(11):1238–1247. https://doi.org/10.1158/2159-8290.CD-17-0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Song XT, Turnis M, Zhou X, Zhu W, Hong B, Rolins L, Rabinovich B, Chen S-Y, Rooney CM, Gottschalk S (2010) A Th1-inducing adenoviral vaccine for boosting adoptively transferred T cells. Mol Ther 19(1):211–217

    PubMed  PubMed Central  Google Scholar 

  173. Stephan MT, Ponomarev V, Brentjens RJ, Chang AH, Dobrenkov KV, Heller G, Sadelain M (2007) T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med 13(12):1440–1449

    CAS  PubMed  Google Scholar 

  174. Straathof KC, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC, Gresik MV, Gee AP, Russell HV, Brenner MK, Rooney CM, Heslop HE (2005a) Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood 105:1898–1904

    CAS  PubMed  Google Scholar 

  175. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM (2005b) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sudo T, Kuramoto T, Komiya S, Inoue A, Itoh K (1997) Expression of MAGE genes in osteosarcoma. J Orthop Res 15(1):128–132

    CAS  PubMed  Google Scholar 

  177. Sun J, Dotti G, Huye LE, Foster AE, Savoldo B, Gramatges MM, Spencer DM, Rooney CM (2010) T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol Ther 18(11):2006–2017. doi:mt2010185 [pii];https://doi.org/10.1038/mt.2010.185. [doi]

  178. Sutherland CM, Krementz ET, Hornung MO, Carter RD, Holmes J (1976) Transfer of in vitro cytotoxicity against osteogenic sarcoma cells. Surgery 79(6):682–685. doi:0039-6060(76)90234-8 [pii]

    CAS  PubMed  Google Scholar 

  179. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR (2012) Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119(1):72–82. doi:blood-2011-07-366419 [pii];https://doi.org/10.1182/blood-2011-07-366419. [doi]

  180. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J (2018) NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol 9:947–947. https://doi.org/10.3389/fimmu.2018.00947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    CAS  PubMed  Google Scholar 

  182. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, Huls H, Miller JC, Kebriaei P, Rabinovitch B, Lee DA, Champlin RE, Bonini C, Naldini L, Rebar EJ, Gregory PD, Holmes MC, Cooper LJ (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24):5697–5705. https://doi.org/10.1182/blood-2012-01-405365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, Rosenberg SA (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210(6):1125–1135. doi:jem.20130110 [pii];https://doi.org/10.1084/jem.20130110. [doi]

  184. Tsukahara T, Kawaguchi S, Torigoe T, Kimura S, Murase M, Ichimiya S, Wada T, Kaya M, Nagoya S, Ishii T, Tatezaki S, Yamashita T, Sato N (2008) Prognostic impact and immunogenicity of a novel osteosarcoma antigen, papillomavirus binding factor, in patients with osteosarcoma. Cancer Sci 99(2):368–375

    CAS  PubMed  Google Scholar 

  185. Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA, Ramos CA, Carrum G, Sasa G, Lulla P, Watanabe A, Kuvalekar M, Gee AP, Wu MF, Liu H, Grilley BJ, Krance RA, Gottschalk S, Brenner MK, Rooney CM, Heslop HE, Leen AM, Omer B (2017) Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 35(31):3547–3557. https://doi.org/10.1200/jco.2017.73.0655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Urakawa H, Nishida Y, Nakashima H, Shimoyama Y, Nakamura S, Ishiguro N (2009) Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. Clin Exp Metastasis 26(8):1005–1012. https://doi.org/10.1007/s10585-009-9290-7

    Article  CAS  PubMed  Google Scholar 

  187. Uttenthal BJ, Chua I, Morris EC, Stauss HJ (2012) Challenges in T cell receptor gene therapy. J Gene Med 14(6):386–399. https://doi.org/10.1002/jgm.2637. [doi]

    Article  CAS  PubMed  Google Scholar 

  188. van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, van den Eynde BJ, Brasseur F, Boon T (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Google Scholar 

  189. van der Stegen SJC, Hamieh M, Sadelain M (2015) The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 14:499. https://doi.org/10.1038/nrd4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeteed therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. doi:nrc3237 [pii];https://doi.org/10.1038/nrc3237. [doi]

  191. Velasquez MP, Torres D, Iwahori K, Kakarla S, Arber C, Rodriguez-Cruz T, Szoor A, Bonifant CL, Gerken C, Cooper LJ, Song XT, Gottschalk S (2016) T cells expressing CD19-specific engager molecules for the immunotherapy of CD19-positive malignancies. Sci Rep 6:27130. https://doi.org/10.1038/srep27130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Velasquez MP, Szoor A, Vaidya A, Thakkar A, Nguyen P, Wu M-F, Liu H, Gottschalk S (2017) CD28 and 41BB costimulation enhances the effector function of CD19-specific engager T cells. Cancer Immunol Res 5(10):860–870. https://doi.org/10.1158/2326-6066.cir-17-0171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Velasquez MP, Bonifant CL, Gottschalk S (2018) Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131(1):30–38. https://doi.org/10.1182/blood-2017-06-741058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang L, Zhang Q, Chen W, Shan B, Ding Y, Zhang G, Cao N, Liu L, Zhang Y (2013) B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One 8(8):e70689. https://doi.org/10.1371/journal.pone.0070689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, Liu Y, Huang J, Lv H, Luo C, K-c F, Yang Q-m, X-l L, Han W (2018) CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. OncoImmunology 7(7):e1440169. https://doi.org/10.1080/2162402X.2018.1440169

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C, Tao H (2019) Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res 38(1):168. https://doi.org/10.1186/s13046-019-1147-6

    Article  PubMed  PubMed Central  Google Scholar 

  197. Watanabe N, Anurathapan U, Brenner M, Heslop H, Leen A, Rooney C, Vera F (2013) Transgenic expression of a novel immunosuppressive signal converter on T cells. Mol Ther 22(S1):S153

    Google Scholar 

  198. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238):985–988

    CAS  PubMed  Google Scholar 

  199. Wilkie S, Burbridge SE, Chiapero-Stanke L, Pereira AC, Cleary S, van der Stegen SJ, Spicer JF, Davies DM, Maher J (2010) Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem 285(33):25538–25544. doi:M110.127951 [pii];https://doi.org/10.1074/jbc.M110.127951. [doi]

  200. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, Burbridge SE, Box C, Eccles SA, Maher J (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J ClinImmunol 32(5):1059–1070. https://doi.org/10.1007/s10875-012-9689-9. [doi]

    Article  CAS  Google Scholar 

  201. Willemsen RA, Debets R, Hart E, Hoogenboom HR, Bolhuis RL, Chames P (2001) A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther 8(21):1601–1608. https://doi.org/10.1038/sj.gt.3301570. [doi]

    Article  CAS  PubMed  Google Scholar 

  202. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. doi:S1471-4906(10)00053-0 [pii];https://doi.org/10.1016/j.it.2010.04.002. [doi]

  203. Yu AL, Uttenreuther-Fischer MM, Huang CS, Tsui CC, Gillies SD, Reisfeld RA, Kung FH (1998) Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol 16(6):2169–2180

    CAS  PubMed  Google Scholar 

  204. Yuan D, Liu B, Liu K, Zhu G, Dai Z, Xie Y (2013) Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J Surg Oncol 108(3):157–162. https://doi.org/10.1002/jso.23368. [doi]

    Article  CAS  PubMed  Google Scholar 

  205. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, Rosenberg SA, Morgan RA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759. doi:mt2010313 [pii];https://doi.org/10.1038/mt.2010.313. [doi]

  206. Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, Nahvi AV, Ngo LT, Sherry RM, Phan GQ, Hughes MS, Kammula US, Feldman SA, Toomey MA, Kerkar SP, Restifo NP, Yang JC, Rosenberg SA (2015) Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res 21(10):2278–2288. https://doi.org/10.1158/1078-0432.CCR-14-2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, Luo Y, Zhang Q, Liu L, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang X, Bie P, Liang H, Pecher G, Qian C (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther 25(5):1248–1258. https://doi.org/10.1016/j.ymthe.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, Plotkin J, Sadelain M (2015) Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28(4):415–428. https://doi.org/10.1016/j.ccell.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhou X, Naik S, Dakhova O, Dotti G, Heslop HE, Brenner MK (2016) Serial activation of the inducible caspase 9 safety switch after human stem cell transplantation. Mol Ther 24(4):823–831. https://doi.org/10.1038/mt.2015.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported by 1R01CA173750 (National Institute of Health), 5P30 CA021765 (National Cancer Institute), the ASSISI Foundation of Memphis, and the American Lebanese Syrian Associated Charities.

Conflict of Interest

SG has patents and patent applications in the field of T-cell therapy and gene therapy for cancer and is a member of the data safety monitoring board of Immatics US, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher DeRenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeRenzo, C., Gottschalk, S. (2020). Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_10

Download citation

Publish with us

Policies and ethics