Skip to main content

Targeting MAPK/MKP Signaling as a Therapeutic Axis in Periodontal Disease

  • Chapter
  • First Online:
Emerging Therapies in Periodontics

Abstract

Periodontal pathogens stimulate inflammatory cytokine and chemokine production within the periodontal microenvironment producing chronic inflammation and subsequent bone loss. In stimulated cells, the maximal induction of cytokine/chemokine expression requires activation of the p38 mitogen-activated protein kinase (MAPK) pathways. The clinical relevance of p38 MAPK activation was demonstrated by our group where excessive MAPK correlated with human periodontal disease severity. Importantly, MAPK signaling contributes toward the expression of multiple gene targets including (interleukin)-1β, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-13, receptor activator of nuclear factor kappa-Β (RANKL), and other inflammatory mediators that can contribute toward periodontal inflammation and bone destruction. Once MAPK activation and substrate phosphorylation occur, MAPK inactivation occurs through specific phosphatase activity via a family of dual-specificity MAPK phosphatases (MKPs) that target the regulatory sites of these kinases. In this chapter, the therapeutic potential to control the MAPK/MKP signaling axis of innate immunity is explored through various therapeutic platforms including small molecule inhibitors, RNA interference, gene therapy, and nanoparticle encapsulation of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391–401.

    Article  PubMed  Google Scholar 

  2. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kirkwood KL, Cirelli JA, Rogers JE, Giannobile WV. Novel host response therapeutic approaches to treat periodontal diseases. Periodontol 2000. 2007;43:294–315.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P. Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem. 2001;276(23):20659–72.

    Article  PubMed  Google Scholar 

  5. Jiang Y, Mehta CK, Hsu TY, Alsulaimani FF. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway. Infect Immun. 2002;70(6):3143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rossa C, Ehmann K, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. J Interf Cytokine Res. 2006;26(10):719–29.

    Article  Google Scholar 

  7. Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B, et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest. 2000;106(6):R59–67.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taubman MA, Valverde P, Han X, Kawai T. Immune response: the key to bone resorption in periodontal disease. J Periodontol. 2005;76(11 Suppl):2033–41.

    Article  PubMed  Google Scholar 

  9. Mogi M, Otogoto J, Ota N, Togari A. Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. J Dent Res. 2004;83(2):166–9.

    Article  PubMed  Google Scholar 

  10. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol. 2006;169(3):987–98.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kirkwood KL, Rossa C Jr. The potential of p38 MAPK inhibitors to modulate periodontal infections. Curr Drug Metab. 2009;10(1):55–67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem. 2005;280(38):32905–13.

    Article  PubMed  Google Scholar 

  13. Ha J, Lee Y, Kim HH. CXCL2 mediates lipopolysaccharide-induced osteoclastogenesis in RANKL-primed precursors. Cytokine. 2011;55(1):48–55.

    Article  PubMed  Google Scholar 

  14. Valerio MS, Herbert BA, Basilakos DS, Browne C, Yu H, Kirkwood KL. Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine. 2014;71(1):71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hotokezaka H, Sakai E, Ohara N, Hotokezaka Y, Gonzales C, Matsuo K, et al. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan. J Cell Biochem. 2007;101(1):122–34.

    Article  PubMed  Google Scholar 

  16. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993;268(20):14553–6.

    Article  PubMed  Google Scholar 

  17. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl). 1996;74(10):589–607.

    Article  Google Scholar 

  18. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.

    Article  PubMed  Google Scholar 

  19. Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science. 1998;281(5379):1001–5.

    Article  PubMed  Google Scholar 

  20. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol. 2001;21(19):6461–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, et al. MK2-induced tristetraprolin: 14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 2004;23(6):1313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caunt CJ, Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J. 2013;280(2):489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abraham SM, Clark AR. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans. 2006;34(Pt 6):1018–23.

    Article  PubMed  Google Scholar 

  24. Dickinson RJ, Keyse SM. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci. 2006;119(Pt 22):4607–15.

    Article  PubMed  Google Scholar 

  25. Liu Y, Shepherd EG, Nelin LD. MAPK phosphatases—regulating the immune response. Nat Rev Immunol. 2007;7(3):202–12.

    Article  PubMed  Google Scholar 

  26. Franklin CC, Kraft AS. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem. 1997;272(27):16917–23.

    Article  PubMed  Google Scholar 

  27. Kikuchi T, Yoshikai Y, Miyoshi J, Katsuki M, Musikacharoen T, Mitani A, et al. Cot/Tpl2 is essential for RANKL induction by lipid A in osteoblasts. J Dent Res. 2003;82(7):546–50.

    Article  PubMed  Google Scholar 

  28. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275(3):768–75.

    Article  PubMed  Google Scholar 

  29. Kirschning CJ, Bauer S. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses. Int J Med Microbiol. 2001;291(4):251–60.

    Article  PubMed  Google Scholar 

  30. Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998;188(11):2091–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang H, Young DW, Gusovsky F, Chow JC. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem. 2000;275(27):20861–6.

    Article  PubMed  Google Scholar 

  32. Suda T, Kobayashi K, Jimi E, Udagawa N, Takahashi N. The molecular basis of osteoclast differentiation and activation. Novartis Found Symp. 2001;232:235–47. discussion 47-50.

    PubMed  Google Scholar 

  33. Roux S, Orcel P. Bone loss. Factors that regulate osteoclast differentiation: an update. Arthritis Res. 2000;2(6):451–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee HJ, Kang IK, Chung CP, Choi SM. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. J Clin Periodontol. 1995;22(11):885–90.

    Article  PubMed  Google Scholar 

  35. Reddi K, Nair SP, White PA, Hodges S, Tabona P, Meghji S, et al. Surface-associated material from the bacterium Actinobacillus actinomycetemcomitans contains a peptide which, in contrast to lipopolysaccharide, directly stimulates fibroblast interleukin-6 gene transcription. Eur J Biochem. 1996;236(3):871–6.

    Article  PubMed  Google Scholar 

  36. Stashenko P, Fujiyoshi P, Obernesser MS, Prostak L, Haffajee AD, Socransky SS. Levels of interleukin 1 beta in tissue from sites of active periodontal disease. J Clin Periodontol. 1991;18(7):548–54.

    Article  PubMed  Google Scholar 

  37. Gorska R, Gregorek H, Kowalski J, Laskus-Perendyk A, Syczewska M, Madalinski K. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J Clin Periodontol. 2003;30(12):1046–52.

    Article  PubMed  Google Scholar 

  38. Geivelis M, Turner DW, Pederson ED, Lamberts BL. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. J Periodontol. 1993;64(10):980–3.

    Article  PubMed  Google Scholar 

  39. Gamonal J, Acevedo A, Bascones A, Jorge O, Silva A. Levels of interleukin-1 beta, -8, and -10 and RANTES in gingival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment. J Periodontol. 2000;71(10):1535–45.

    Article  PubMed  Google Scholar 

  40. Ejeil AL, Gaultier F, Igondjo-Tchen S, Senni K, Pellat B, Godeau G, et al. Are cytokines linked to collagen breakdown during periodontal disease progression? J Periodontol. 2003;74(2):196–201.

    Article  PubMed  Google Scholar 

  41. Assuma R, Oates T, Cochran D, Amar S, Graves DT. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol. 1998;160(1):403–9.

    PubMed  Google Scholar 

  42. Graves DT. The potential role of chemokines and inflammatory cytokines in periodontal disease progression. Clin Infect Dis. 1999;28(3):482–90.

    Article  PubMed  Google Scholar 

  43. Cheng X, Kinosaki M, Murali R, Greene MI. The TNF receptor superfamily: role in immune inflammation and bone formation. Immunol Res. 2003;27(2–3):287–94.

    Article  PubMed  Google Scholar 

  44. Oates TW, Graves DT, Cochran DL. Clinical, radiographic and biochemical assessment of IL-1/TNF-alpha antagonist inhibition of bone loss in experimental periodontitis. J Clin Periodontol. 2002;29(2):137–43.

    Article  PubMed  Google Scholar 

  45. Edwards CJ. Immunological therapies for rheumatoid arthritis. Br Med Bull. 2005;73–74:71–82.

    Article  PubMed  Google Scholar 

  46. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.

    Article  PubMed  Google Scholar 

  47. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  PubMed  Google Scholar 

  48. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96(7):3540–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005;57(6):389–95.

    Article  PubMed  Google Scholar 

  50. Braz JC, Bueno OF, Liang Q, Wilkins BJ, Dai YS, Parsons S, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest. 2003;111(10):1475–86.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P. Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem. 2002;277(50):48664–76.

    Article  PubMed  Google Scholar 

  52. Li Q, Yu H, Zinna R, Martin K, Herbert B, Liu A, et al. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. J Pharmacol Exp Ther. 2011;336(3):633–42.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dunmyer J, Herbert B, Li Q, Zinna R, Martin K, Yu H, et al. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss. Mol Oral Microbiol. 2012;27(5):397–407.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu H, Li Q, Herbert B, Zinna R, Martin K, Junior CR, et al. Anti-inflammatory effect of MAPK phosphatase-1 local gene transfer in inflammatory bone loss. Gene Ther. 2011;18(4):344–53.

    Article  PubMed  Google Scholar 

  55. Park SR, Kim DJ, Han SH, Kang MJ, Lee JY, Jeong YJ, et al. Diverse toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun. 2014;82(5):1914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rogers JE, Li F, Coatney DD, Rossa C, Bronson P, Krieder JM, et al. Actinobacillus actinomycetemcomitans lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis. J Periodontol. 2007;78(3):550–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Patil C, Zhu X, Rossa C Jr, Kim YJ, Kirkwood KL. p38 MAPK regulates IL-1beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol Investig. 2004;33(2):213–33.

    Article  Google Scholar 

  58. Patil C, Rossa C Jr, Kirkwood KL. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiol Immunol. 2006;21(6):392–8.

    Article  PubMed  Google Scholar 

  59. Rossa C Jr, Liu M, Bronson P, Kirkwood KL. Transcriptional activation of MMP-13 by periodontal pathogenic LPS requires p38 MAP kinase. J Endotoxin Res. 2007;13(2):85–93.

    Article  PubMed  Google Scholar 

  60. Rossa C Jr, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1beta and TNF-alpha in immortalized periodontal ligament fibroblasts. Matrix Biol. 2005;24(7):478–88.

    Article  PubMed  Google Scholar 

  61. Braun T, Lepper J, Ruiz Heiland G, Hofstetter W, Siegrist M, Lezuo P, et al. Mitogen-activated protein kinase 2 regulates physiological and pathological bone turnover. J Bone Miner Res. 2013;28(4):936–47.

    Article  PubMed  Google Scholar 

  62. Herbert BA, Valerio MS, Gaestel M, Kirkwood KL. Sexual dimorphism in MAPK-activated protein kinase-2 (MK2) regulation of RANKL-induced osteoclastogenesis in osteoclast progenitor subpopulations. PLoS One. 2015;10(5):e0125387.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jacquin C, Gran DE, Lee SK, Lorenzo JA, Aguila HL. Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res. 2006;21(1):67–77.

    Article  PubMed  Google Scholar 

  64. Lorenzo J. Characterization of osteoclast precursor cells in murine bone marrow. J Musculoskelet Neuronal Interact. 2003;3(4):273–7. discussion 92-4.

    PubMed  Google Scholar 

  65. Sartori R, Li F, Kirkwood KL. MAP kinase phosphatase-1 protects against inflammatory bone loss. J Dent Res. 2009;88(12):1125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valerio MS, Herbert BA, Griffin AC 3rd, Wan Z, Hill EG, Kirkwood KL. MKP-1 signaling events are required for early osteoclastogenesis in lineage defined progenitor populations by disrupting RANKL-induced NFATc1 nuclear translocation. Bone. 2014;60:16–25.

    Article  PubMed  Google Scholar 

  67. Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, et al. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol. 2011;211(2):145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Griffin AC 3rd, Kern MJ, Kirkwood KL. MKP-1 is essential for canonical vitamin D-induced signaling through nuclear import and regulates RANKL expression and function. Mol Endocrinol. 2012;26(10):1682–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kirkwood KL, Li F, Rogers JE, Otremba J, Coatney DD, Kreider JM, et al. A p38alpha selective mitogen-activated protein kinase inhibitor prevents periodontal bone loss. J Pharmacol Exp Ther. 2007;320(1):56–63.

    Article  PubMed  Google Scholar 

  70. Rogers JE, Li F, Coatney DD, Otremba J, Kriegl JM, Protter TA, et al. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. J Periodontol. 2007;78(10):1992–8.

    Article  PubMed  Google Scholar 

  71. Dominguez C, Powers DA, Tamayo N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr Opin Drug Discov Devel. 2005;8(4):421–30.

    PubMed  Google Scholar 

  72. Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 1992;313(3):307–13.

    Article  PubMed  Google Scholar 

  73. Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol. 1999;1(2):94–7.

    Article  PubMed  Google Scholar 

  74. Giampietri A, Grohmann U, Vacca C, Fioretti MC, Puccetti P, Campanile F. Dual effect of IL-4 on resistance to systemic gram-negative infection and production of TNF-alpha. Cytokine. 2000;12(4):417–21.

    Article  PubMed  Google Scholar 

  75. Greenwald RA, Kirkwood K. Adult periodontitis as a model for rheumatoid arthritis (with emphasis on treatment strategies). J Rheumatol. 1999;26(8):1650–3.

    PubMed  Google Scholar 

  76. Mercado FB, Marshall RI, Bartold PM. Inter-relationships between rheumatoid arthritis and periodontal disease. A review. J Clin Periodontol. 2003;30(9):761–72.

    Article  PubMed  Google Scholar 

  77. Hegen M, Gaestel M, Nickerson-Nutter CL, Lin LL, Telliez JB. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol. 2006;177(3):1913–7.

    Article  PubMed  Google Scholar 

  78. Herbert BA, Steinkamp HM, Gaestel M, Kirkwood KL. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss. Infect Immun. 2017;85(1):e00552–16.

    Google Scholar 

  79. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008;27(2):253–61.

    Article  PubMed  Google Scholar 

  80. Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol. 2002;169(11):6408–16.

    Article  PubMed  Google Scholar 

  81. Shepherd EG, Zhao Q, Welty SE, Hansen TN, Smith CV, Liu Y. The function of mitogen-activated protein kinase phosphatase-1 in peptidoglycan-stimulated macrophages. J Biol Chem. 2004;279(52):54023–31.

    Article  PubMed  Google Scholar 

  82. Nimah M, Zhao B, Denenberg AG, Bueno O, Molkentin J, Wong HR, et al. Contribution of MKP-1 regulation of p38 to endotoxin tolerance. Shock. 2005;23(1):80–7.

    Article  PubMed  Google Scholar 

  83. Zhao Q, Shepherd EG, Manson ME, Nelin LD, Sorokin A, Liu Y. The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: attenuation of proinflammatory cytokine biosynthesis via feedback control of p38. J Biol Chem. 2005;280(9):8101–8.

    Article  PubMed  Google Scholar 

  84. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A. 2006;103(7):2274–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 2006;203(1):15–20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T. Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol. 2006;176(3):1899–907.

    Article  PubMed  Google Scholar 

  87. Nieminen R, Korhonen R, Moilanen T, Clark AR, Moilanen E. Aurothiomalate inhibits cyclooxygenase 2, matrix metalloproteinase 3, and interleukin-6 expression in chondrocytes by increasing MAPK phosphatase 1 expression and decreasing p38 phosphorylation: MAPK phosphatase 1 as a novel target for antirheumatic drugs. Arthritis Rheum. 2010;62(6):1650–9.

    Article  PubMed  Google Scholar 

  88. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chaves P, Oliveira J, Haas A, Beck RCR. Applications of polymeric nanoparticles in oral diseases: a review of recent findings. Curr Pharm Des. 2018;24(13):1377–94.

    Article  PubMed  Google Scholar 

  90. de Sousa FF, Ferraz C, Rodrigues LK, Nojosa Jde S, Yamauti M. Nanotechnology in dentistry: drug delivery systems for the control of biofilm-dependent oral diseases. Curr Drug Deliv. 2014;11(6):719–28.

    Article  PubMed  Google Scholar 

  91. Goyal G, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease. Crit Rev Ther Drug Carrier Syst. 2014;31(2):89–119.

    Article  PubMed  Google Scholar 

  92. Keservani RK, Sharma AK. Nanoparticulate drug delivery systems. Toronto, New Jersey: Apple Academic Press; 2019.

    Book  Google Scholar 

  93. Lee BS, Lee CC, Wang YP, Chen HJ, Lai CH, Hsieh WL, et al. Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int J Nanomedicine. 2016;11:285–97.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Narang RS, Narang JK. Nanomedicines for dental applications-scope and future perspective. Int J Pharm Investig. 2015;5(3):121–3.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Noronha VT, Paula AJ, Duran G, Galembeck A, Cogo-Muller K, Franz-Montan M, et al. Silver nanoparticles in dentistry. Dent Mater. 2017;33(10):1110–26.

    Article  PubMed  Google Scholar 

  96. Yadav SK, Khan G, Mishra B. Advances in patents related to intrapocket technology for the management of periodontitis. Recent Pat Drug Deliv Formul. 2015;9(2):129–45.

    Article  PubMed  Google Scholar 

  97. Zupancic S, Kocbek P, Baumgartner S, Kristl J. Contribution of nanotechnology to improved treatment of periodontal disease. Curr Pharm Des. 2015;21(22):3257–71.

    Article  PubMed  Google Scholar 

  98. Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials. 2005;26(35):7260–75.

    Article  PubMed  Google Scholar 

  99. Valerio MSAF, Kirkwood KL. Functionalized nanoparticles containing MKP-1 agonists reduce periodontal bone loss. J Periodontol. 2019;90(8):894–902. accepted 1/6/2019.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Krayer JW, Leite RS, Kirkwood KL. Non-surgical chemotherapeutic treatment strategies for the management of periodontal diseases. Dent Clin N Am. 2010;54(1):13–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) grants 1 R01DE028258 and 1 R21DE027017.

Disclosure of Interest: There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith L. Kirkwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirkwood, K.L. (2020). Targeting MAPK/MKP Signaling as a Therapeutic Axis in Periodontal Disease. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics