Skip to main content

Spatiotemporal Controls of Tooth-Supportive Structure Neogenesis by 3D Printing Technology

  • Chapter
  • First Online:
Emerging Therapies in Periodontics
  • 628 Accesses

Abstract

At present, various tissue engineering strategies in the regenerative medicine have been developed for multiple tissue regeneration and integrative structure formations in musculoskeletal system. However, the regenerations of dental tissues or tooth-supportive structures are still challenging due to the micro-interfacial compartmentalization of multiple tissues, their integrations for systematic responses, and spatiotemporal organizations of engineered fibrous tissues. In particular, the biomaterial-based approaches are limitedly investigated for spatiotemporal controls of periodontal regenerations and challenging to promote micron-scaled interfacial tissue compartmentalization with their integrations for functioning restorations. This chapter demonstrates biomaterial applications for periodontal tissue engineering and the advanced 3D fabrication technologies for preclinical applications and the limited clinical trial using 3D scaffolding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20. https://doi.org/10.1016/S0140-6736(05)67728-8.

    Article  PubMed  Google Scholar 

  2. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90. https://doi.org/10.1038/nrmicro2337.

    Article  PubMed  Google Scholar 

  3. Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, Wall IB, Shi S, Kim HW. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–11. https://doi.org/10.1177/0022034514540682.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US adults: national health and nutrition examination survey 2009–2014. J Am Dent Assoc. 2018;149(7):576–588.e576. https://doi.org/10.1016/j.adaj.2018.04.023.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eke PI, Wei L, Borgnakke WS, Thornton-Evans G, Zhang X, Lu H, McGuire LC, Genco RJ. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontol 2000. 2016;72(1):76–95. https://doi.org/10.1111/prd.12145.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tonetti MS, D’Aiuto F, Nibali L, Donald A, Storry C, Parkar M, Suvan J, Hingorani AD, Vallance P, Deanfield J. Treatment of periodontitis and endothelial function. N Engl J Med. 2007;356(9):911–20. https://doi.org/10.1056/NEJMoa063186.

    Article  PubMed  Google Scholar 

  7. Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res. 2014a;93(12):1304–12. https://doi.org/10.1177/0022034514550716.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue engineered constructs for periodontal regeneration: current status and future perspectives. Adv Healthc Mater. 2018;7(21):e1800457. https://doi.org/10.1002/adhm.201800457.

    Article  PubMed  Google Scholar 

  9. Park CH, Kim KH, Lee YM, Giannobile WV, Seol YJ. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures. Int J Mol Sci. 2017;18(9). https://doi.org/10.3390/ijms18091927.

  10. Pilipchuk SP, Fretwurst T, Yu N, Larsson L, Kavanagh NM, Asa’ad F, Cheng KCK, Lahann J, Giannobile WV. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues. Adv Healthc Mater. 2018;7(22):e1800750. https://doi.org/10.1002/adhm.201800750.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016;5(6):676–87. https://doi.org/10.1002/adhm.201500758.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006;(2):CD001724. https://doi.org/10.1002/14651858.CD001724.pub2.

  13. Zita Gomes R, Paraud Freixas A, Han CH, Bechara S, Tawil I. Alveolar ridge reconstruction with titanium meshes and simultaneous implant placement: a retrospective, multicenter clinical study. Biomed Res Int. 2016;2016:5126838. https://doi.org/10.1155/2016/5126838.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pieri F, Corinaldesi G, Fini M, Aldini NN, Giardino R, Marchetti C. Alveolar ridge augmentation with titanium mesh and a combination of autogenous bone and anorganic bovine bone: a 2-year prospective study. J Periodontol. 2008;79(11):2093–103. https://doi.org/10.1902/jop.2008.080061.

    Article  PubMed  Google Scholar 

  15. Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67(6):1218–25. https://doi.org/10.1016/j.joms.2008.11.022.

    Article  PubMed  Google Scholar 

  16. Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6(10):1187–97. https://doi.org/10.1002/biot.201100294.

    Article  PubMed  Google Scholar 

  17. Her S, Kang T, Fien MJ. Titanium mesh as an alternative to a membrane for ridge augmentation. J Oral Maxillofac Surg. 2012;70(4):803–10. https://doi.org/10.1016/j.joms.2011.11.017.

    Article  PubMed  Google Scholar 

  18. Watzinger F, Luksch J, Millesi W, Schopper C, Neugebauer J, Moser D, Ewers R. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg. 2000;38(4):312–5. https://doi.org/10.1054/bjom.1999.0228.

    Article  PubMed  Google Scholar 

  19. Cheon GB, Kang KL, Yoo MK, Yu JA, Lee DW. Alveolar ridge preservation using allografts and dense polytetrafluoroethylene membranes with open membrane technique in unhealthy extraction socket. J Oral Implantol. 2017;43(4):267–73. https://doi.org/10.1563/aaid-joi-D-17-00012.

    Article  PubMed  Google Scholar 

  20. Chan HL, Benavides E, Tsai CY, Wang HL. A titanium mesh and particulate allograft for vertical ridge augmentation in the posterior mandible: a pilot study. Int J Periodont Restor Dent. 2015;35(4):515–22. https://doi.org/10.11607/prd.1980.

    Article  Google Scholar 

  21. Stoecklin-Wasmer C, Rutjes AW, da Costa BR, Salvi GE, Juni P, Sculean A. Absorbable collagen membranes for periodontal regeneration: a systematic review. J Dent Res. 2013;92(9):773–81. https://doi.org/10.1177/0022034513496428.

    Article  PubMed  Google Scholar 

  22. Garg A. Barrier membranes—materials review, part I of II. Dent Implantol Updat. 2011;22(9):61–4.

    Google Scholar 

  23. Barber HD, Lignelli J, Smith BM, Bartee BK. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg. 2007;65(4):748–52. https://doi.org/10.1016/j.joms.2006.10.042.

    Article  PubMed  Google Scholar 

  24. Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers. 2016;8(4):115.

    Article  PubMed Central  Google Scholar 

  25. Hoogeveen EJ, Gielkens PF, Schortinghuis J, Ruben JL, Huysmans MC, Stegenga B. Vivosorb as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography. Int J Oral Maxillofac Surg. 2009;38(8):870–5. https://doi.org/10.1016/j.ijom.2009.04.002.

    Article  PubMed  Google Scholar 

  26. Shang S, Yang F, Cheng X, Walboomers XF, Jansen JA. The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur Cell Mater. 2010;19:180–92.

    Article  PubMed  Google Scholar 

  27. Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(Lactic-co-Glycolic Acid): applications and future prospects for periodontal tissue regeneration. Polymers. 2017;9(6):189.

    Article  PubMed Central  Google Scholar 

  28. Won JY, Park CY, Bae JH, Ahn G, Kim C, Lim DH, Cho DW, Yun WS, Shim JH, Huh JB. Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Biomed Mater. 2016;11(5):055013. https://doi.org/10.1088/1748-6041/11/5/055013.

    Article  PubMed  Google Scholar 

  29. Shim JH, Huh JB, Park JY, Jeon YC, Kang SS, Kim JY, Rhie JW, Cho DW. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng A. 2013;19(3–4):317–28. https://doi.org/10.1089/ten.TEA.2011.0730.

    Article  Google Scholar 

  30. Nowzari H, Matian F, Slots J. Periodontal pathogens on polytetrafluoroethylene membrane for guided tissue regeneration inhibit healing. J Clin Periodontol. 1995;22(6):469–74.

    Article  PubMed  Google Scholar 

  31. Pihlstrom BL, McHugh RB, Oliphant TH, Ortiz-Campos C. Comparison of surgical and nonsurgical treatment of periodontal disease. A review of current studies and additional results after 61/2 years. J Clin Periodontol. 1983;10(5):524–41.

    Article  PubMed  Google Scholar 

  32. Tonetti MS, Pini-Prato G, Cortellini P. Periodontal regeneration of human intrabony defects. IV. Determinants of healing response. J Periodontol. 1993;64(10):934–40. https://doi.org/10.1902/jop.1993.64.10.934.

    Article  PubMed  Google Scholar 

  33. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K. Metallic biomaterials: current challenges and opportunities. Materials (Basel). 2017;10(8) https://doi.org/10.3390/ma10080884.

  34. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8(3):932–58. https://doi.org/10.3390/ma8030932.

    Article  PubMed Central  Google Scholar 

  35. Fugazzotto PA, Shanaman R, Manos T, Shectman R. Guided bone regeneration around titanium implants: report of the treatment of 1,503 sites with clinical reentries. Int J Periodont Restor Dent. 1997;17 (3):292, 293–299.

    Google Scholar 

  36. Proussaefs P, Lozada J. Use of titanium mesh for staged localized alveolar ridge augmentation: clinical and histologic-histomorphometric evaluation. J Oral Implantol. 2006;32(5):237–47. https://doi.org/10.1563/1548-1336(2006)32[237:UOTMFS]2.0.CO;2.

    Article  PubMed  Google Scholar 

  37. Ronda M, Rebaudi A, Torelli L, Stacchi C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res. 2014;25(7):859–66. https://doi.org/10.1111/clr.12157.

    Article  PubMed  Google Scholar 

  38. Buser D, Bragger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res. 1990;1(1):22–32.

    Article  PubMed  Google Scholar 

  39. von Arx T, Hardt N, Wallkamm B. The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J Oral Maxillofac Implants. 1996;11(3):387–94.

    Google Scholar 

  40. Naira LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  Google Scholar 

  41. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40. https://doi.org/10.1016/j.addr.2015.03.004.

    Article  PubMed  Google Scholar 

  42. Yilgor C, Yilgor Huri P, Huri G. Tissue engineering strategies in ligament regeneration. Stem Cells Int. 2012;2012:374676. https://doi.org/10.1155/2012/374676.

    Article  PubMed  Google Scholar 

  43. Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72(2):215–29. https://doi.org/10.1902/jop.2001.72.2.215.

    Article  PubMed  Google Scholar 

  44. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54.

    Article  PubMed  Google Scholar 

  45. Rowland CR, Lennon DP, Caplan AI, Guilak F. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials. 2013;34(23):5802–12. https://doi.org/10.1016/j.biomaterials.2013.04.027.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21:9. https://doi.org/10.1186/s40824-017-0095-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blumenthal N, Steinberg J. The use of collagen membrane barriers in conjunction with combined demineralized bone-collagen gel implants in human infrabony defects. J Periodontol. 1990;61(6):319–27. https://doi.org/10.1902/jop.1990.61.6.319.

    Article  PubMed  Google Scholar 

  48. Chen CC, Wang HL, Smith F, Glickman GN, Shyr Y, O’Neal RB. Evaluation of a collagen membrane with and without bone grafts in treating periodontal intrabony defects. J Periodontol. 1995;66(10):838–47. https://doi.org/10.1902/jop.1995.66.10.838.

    Article  PubMed  Google Scholar 

  49. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(Suppl 9):143S–52S. https://doi.org/10.1177/0022034515588885.

    Article  PubMed  Google Scholar 

  50. Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5(7):569–97. https://doi.org/10.1002/mabi.200500062.

    Article  PubMed  Google Scholar 

  51. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015;8(9):5744–94. https://doi.org/10.3390/ma8095273.

    Article  Google Scholar 

  52. Suuronen R, Pohjonen T, Hietanen J, Lindqvist C. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J Oral Maxillofac Surg. 1998;56(5):604–14. discussion 614–605.

    Article  PubMed  Google Scholar 

  53. Serino G, Biancu S, Iezzi G, Piattelli A. Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res. 2003;14(5):651–8.

    Article  PubMed  Google Scholar 

  54. Soffer A. The practitioner’s role in detection of adverse drug reactions. Chest. 1984;86(6):808–9.

    Article  PubMed  Google Scholar 

  55. Akita D, Morokuma M, Saito Y, Yamanaka K, Akiyama Y, Sato M, Mashimo T, Toriumi T, Arai Y, Kaneko T, Tsukimura N, Isokawa K, Ishigami T, Honda MJ. Periodontal tissue regeneration by transplantation of rat adipose-derived stromal cells in combination with PLGA-based solid scaffolds. Biomed Res. 2014;35(2):91–103.

    Article  PubMed  Google Scholar 

  56. Brown A, Zaky S, Ray H Jr, Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–53. https://doi.org/10.1016/j.actbio.2014.09.008.

    Article  PubMed  Google Scholar 

  57. Gentile P, Frongia ME, Cardellach M, Miller CA, Stafford GP, Leggett GJ, Hatton PV. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces. Acta Biomater. 2015;21:35–43. https://doi.org/10.1016/j.actbio.2015.04.009.

    Article  PubMed  Google Scholar 

  58. Han Y, Zeng Q, Lingling E, Wang D, He H, Liu H. Sustained topical delivery of insulin from fibrin gel loaded with poly(lactic-co-glycolic acid) microspheres improves the biomechanical retention of titanium implants in type 1 diabetic rats. J Oral Maxillofac Surg. 2012;70(10):2299–308. https://doi.org/10.1016/j.joms.2012.05.028.

    Article  PubMed  Google Scholar 

  59. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16. discussion 16.

    Article  PubMed  Google Scholar 

  60. Coombes AG, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315–25.

    Article  PubMed  Google Scholar 

  61. Khor HL, Ng KW, Schantz JT, Phan T-T, Lim TC, Teoh SH, Hutmacher DW. Poly(ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalen. Mater Sci Eng C. 2002;20(1–2):71–5.

    Article  Google Scholar 

  62. Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6(12):4725–33.

    Article  PubMed  Google Scholar 

  63. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra264. https://doi.org/10.1126/scitranslmed.3010825.

    Article  Google Scholar 

  64. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed Bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(Suppl 9):153S–7S. https://doi.org/10.1177/0022034515588303.

    Article  PubMed  Google Scholar 

  65. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368(21):2043–5. https://doi.org/10.1056/NEJMc1206319.

    Article  PubMed  Google Scholar 

  66. Park CH, Rios HF, Taut AD, Padial-Molina M, Flanagan CL, Pilipchuk SP, Hollister SJ, Giannobile WV. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014b;20(7):533–42. https://doi.org/10.1089/ten.TEC.2013.0619.

    Article  PubMed  Google Scholar 

  67. Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93(12):1212–21. https://doi.org/10.1177/0022034514544301.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng A. 2014;20(7–8):1342–51. https://doi.org/10.1089/ten.TEA.2013.0386.

    Article  Google Scholar 

  69. Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, Flanagan CL, Hollister SJ, Giannobile WV. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials. 2012;33(1):137–45. https://doi.org/10.1016/j.biomaterials.2011.09.057.

    Article  PubMed  Google Scholar 

  70. Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004.

    Article  PubMed  Google Scholar 

  71. Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106. https://doi.org/10.1016/j.biomaterials.2017.11.030.

    Article  PubMed  Google Scholar 

  72. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935.

    Article  PubMed  Google Scholar 

  73. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742–62. https://doi.org/10.1002/adhm.201500168.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. https://doi.org/10.1038/nmat1421.

    Article  PubMed  Google Scholar 

  75. Shim JH, Won JY, Sung SJ, Lim DH, Yun WS, Jeon YC, Huh JB. Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs. Polymers. 2015;7(10):2061–77.

    Article  Google Scholar 

  76. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials. 2012;33(22):5560–73. https://doi.org/10.1016/j.biomaterials.2012.04.038.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Osteology Foundation (#16-173) and National Research Foundation of Korea (NRF-2014R1A1A2059301) to CHP, the Osteology Foundation to YDC, and the NIH/NIDCR U24 DE026915 to WVG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Ho Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, YD., Giannobile, W.V., Sarment, L., Park, C.H. (2020). Spatiotemporal Controls of Tooth-Supportive Structure Neogenesis by 3D Printing Technology. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics