Skip to main content

Protein- and Cell-Based Therapies for Periodontal Regeneration

  • Chapter
  • First Online:
Emerging Therapies in Periodontics

Abstract

To fully regenerate the periodontal tissues remains a challenge in our daily practice. Periodontal regeneration is a complex process involving a series of cellular and molecular events. In the last two decades, significant advances have been made in applying proteins and peptides to treat periodontal osseous defects. Several products are currently available and a few others are under development. Stem cell therapy has also been vigorously investigated for regenerating craniofacial tissues including periodontia. In this chapter, we review the current status of protein- and cell-based therapies for periodontal regeneration, with an emphasis on products that have been tested in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang HL, et al. Periodontal regeneration. J Periodontol. 2005;76:1601–22. https://doi.org/10.1902/jop.2005.76.9.1601.

    Article  PubMed  Google Scholar 

  2. Becker W, Becker BE, Ochsenbein C, Kerry G, Caffesse R, Morrison EC, Prichard J. A longitudinal study comparing scaling, osseous surgery and modified Widman procedures. Results after one year. J Periodontol. 1988;59:351–65. https://doi.org/10.1902/jop.1988.59.6.351.

    Article  PubMed  Google Scholar 

  3. Hill RW, Ramfjord SP, Morrison EC, Appleberry EA, Caffesse RG, Kerry GJ, Nissle RR. Four types of periodontal treatment compared over two years. J Periodontol. 1981;52:655–62. https://doi.org/10.1902/jop.1981.52.11.655.

    Article  PubMed  Google Scholar 

  4. Kaldahl WB, Kalkwarf KL, Patil KD, Molvar MP, Dyer JK. Long-term evaluation of periodontal therapy: I. response to 4 therapeutic modalities. J Periodontol. 1996;67:93–102. https://doi.org/10.1902/jop.1996.67.2.93.

    Article  PubMed  Google Scholar 

  5. Lindhe J, Westfelt E, Nyman S, Socransky SS, Heijl L, Bratthall G. Healing following surgical/non-surgical treatment of periodontal disease. A clinical study. J Clin Periodontol. 1982;9:115–28.

    PubMed  Google Scholar 

  6. Pihlstrom BL, McHugh RB, Oliphant TH, Ortiz-Campos C. Comparison of surgical and nonsurgical treatment of periodontal disease. A review of current studies and additional results after 61/2 years. J Clin Periodontol. 1983;10:524–41.

    PubMed  Google Scholar 

  7. Ramfjord SP, et al. 4 modalities of periodontal treatment compared over 5 years. J Clin Periodontol. 1987;14:445–52.

    PubMed  Google Scholar 

  8. Caton J, Nyman S. Histometric evaluation of periodontal surgery. I. The modified Widman flap procedure. J Clin Periodontol. 1980;7:212–23.

    PubMed  Google Scholar 

  9. Caton J, Nyman S, Zander H. Histometric evaluation of periodontal surgery. II connective tissue attachment levels after four regenerative procedures. J Clin Periodontol. 1980;7:224–31.

    PubMed  Google Scholar 

  10. Caton J, Zander HA. Osseous repair of an infrabony pocket without new attachment of connective tissue. J Clin Periodontol. 1976;3:54–8.

    PubMed  Google Scholar 

  11. Caton JG, Zander HA. The attachment between tooth and gingival tissues after periodic root planing and soft tissue curettage. J Periodontol. 1979;50:462–6. https://doi.org/10.1902/jop.1979.50.9.462.

    Article  PubMed  Google Scholar 

  12. Nyman S, Lindhe J, Karring T. Healing following surgical treatment and root demineralization in monkeys with periodontal disease. J Clin Periodontol. 1981;8:249–58.

    PubMed  Google Scholar 

  13. Andreasen JO. Histometric study of healing of periodontal tissues in rats after surgical injury. II. Healing events of alveolar bone, periodontal ligaments and cementum. Odontol Revy. 1976;27:131–44.

    PubMed  Google Scholar 

  14. Araujo MG, Berglundh T, Albrekstsson T, Lindhe J. Bone formation in furcation defects. An experimental study in the dog. J Clin Periodontol. 1999;26:643–52.

    PubMed  Google Scholar 

  15. Araujo MG, Berglundh T, Lindhe J. On the dynamics of periodontal tissue formation in degree III furcation defects. An experimental study in dogs. J Clin Periodontol. 1997;24:738–46.

    PubMed  Google Scholar 

  16. Aukhil I. Biology of wound healing. Periodontology. 2000;22:44–50.

    Google Scholar 

  17. Polimeni G, Xiropaidis AV, Wikesjo UM. Biology and principles of periodontal wound healing/regeneration. Periodontology. 2006;41:30–47. https://doi.org/10.1111/j.1600-0757.2006.00157.x.

    Article  Google Scholar 

  18. Wikesjo UM, Crigger M, Nilveus R, Selvig KA. Early healing events at the dentin-connective tissue interface. Light and transmission electron microscopy observations. J Periodontol. 1991;62:5–14. https://doi.org/10.1902/jop.1991.62.1.5.

    Article  PubMed  Google Scholar 

  19. Wikesjo UM, Nilveus RE, Selvig KA. Significance of early healing events on periodontal repair: a review. J Periodontol. 1992;63:158–65. https://doi.org/10.1902/jop.1992.63.3.158.

    Article  PubMed  Google Scholar 

  20. Polson AM, Proye MP. Fibrin linkage: a precursor for new attachment. J Periodontol. 1983;54:141–7. https://doi.org/10.1902/jop.1983.54.3.141.

    Article  PubMed  Google Scholar 

  21. Cochran DL, Wozney JM. Biological mediators for periodontal regeneration. Periodontology. 1999;19:40–58.

    Google Scholar 

  22. Garlet GP, Giannobile WV. Macrophages: the bridge between inflammation resolution and tissue repair? J Dent Res. 2018;97:1079–81. https://doi.org/10.1177/0022034518785857.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhuang Z, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models. J Dent Res. 2019;98(2):200–8. https://doi.org/10.1177/0022034518805984. 22034518805984.

    Article  PubMed  Google Scholar 

  24. Melcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976;47:256–60. https://doi.org/10.1902/jop.1976.47.5.256.

    Article  PubMed  Google Scholar 

  25. Caton JG, DeFuria EL, Polson AM, Nyman S. Periodontal regeneration via selective cell repopulation. J Periodontol. 1987;58:546–52. https://doi.org/10.1902/jop.1987.58.8.546.

    Article  PubMed  Google Scholar 

  26. Nyman S, Gottlow J, Lindhe J, Karring T, Wennstrom J. New attachment formation by guided tissue regeneration. J Periodontal Res. 1987;22:252–4.

    PubMed  Google Scholar 

  27. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982b;9:290–6.

    PubMed  Google Scholar 

  28. Kao RT, Nares S, Reynolds MA. Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S77–104. https://doi.org/10.1902/jop.2015.130685.

    Article  PubMed  Google Scholar 

  29. Beube F. A radiographic and histologic study on reattachment. J Periodontol. 1952;23:158–64.

    Google Scholar 

  30. Polson AM, Heijl LC. Osseous repair in infrabony periodontal defects. J Clin Periodontol. 1978;5:13–23.

    PubMed  Google Scholar 

  31. Prichard J. Regeneration of bone following periodontal therapy; report of cases. Oral Surg Oral Med Oral Pathol. 1957;10:247–52.

    PubMed  Google Scholar 

  32. Cochran DL, et al. A randomized clinical trial evaluating rh-FGF-2/beta-TCP in periodontal defects. J Dent Res. 2016;95:523–30. https://doi.org/10.1177/0022034516632497.

    Article  PubMed  Google Scholar 

  33. Heijl L, Heden G, Svardstrom G, Ostgren A. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol. 1997;24:705–14.

    PubMed  Google Scholar 

  34. Jayakumar A, et al. Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with beta-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol. 2011;38:163–72. https://doi.org/10.1111/j.1600-051X.2010.01639.x.

    Article  PubMed  Google Scholar 

  35. Kitamura M, et al. FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res. 2011;90:35–40. https://doi.org/10.1177/0022034510384616.

    Article  PubMed  Google Scholar 

  36. Kitamura M, et al. Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase II clinical trial. PLoS One. 2008;3:e2611. https://doi.org/10.1371/journal.pone.0002611.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nevins M, et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol. 2005;76:2205–15. https://doi.org/10.1902/jop.2005.76.12.2205.

    Article  PubMed  Google Scholar 

  38. Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Multi-center clinical comparison of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J Periodontol. 2000;71:1671–9. https://doi.org/10.1902/jop.2000.71.11.1671.

    Article  PubMed  Google Scholar 

  39. Camelo M, Nevins ML, Schenk RK, Lynch SE, Nevins M. Periodontal regeneration in human class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int J Periodontics Restorative Dent. 2003;23:213–25.

    PubMed  Google Scholar 

  40. Heijl L. Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol. 1997;24:693–6.

    PubMed  Google Scholar 

  41. McGuire MK, Scheyer ET, Schupbach P. Growth factor-mediated treatment of recession defects: a randomized controlled trial and histologic and microcomputed tomography examination. J Periodontol. 2009;80:550–64. https://doi.org/10.1902/jop.2009.080502.

    Article  PubMed  Google Scholar 

  42. Mellonig JT. Enamel matrix derivative for periodontal reconstructive surgery: technique and clinical and histologic case report. Int J Periodontics Restorative Dent. 1999;19:8–19.

    PubMed  Google Scholar 

  43. Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol. 2003;74:1282–92. https://doi.org/10.1902/jop.2003.74.9.1282.

    Article  PubMed  Google Scholar 

  44. Sculean A, Chiantella GC, Windisch P, Donos N. Clinical and histologic evaluation of human intrabony defects treated with an enamel matrix protein derivative (Emdogain). Int J Periodontics Restorative Dent. 2000;20:374–81.

    PubMed  Google Scholar 

  45. Stavropoulos A, Windisch P, Gera I, Capsius B, Sculean A, Wikesjo UM. A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/beta-TCP for periodontal regeneration. J Clin Periodontol. 2011b;38:1044–54. https://doi.org/10.1111/j.1600-051X.2011.01778.x.

    Article  PubMed  Google Scholar 

  46. Yukna R, Salinas TJ, Carr RF. Periodontal regeneration following use of ABM/P-1 5: a case report. Int J Periodontics Restorative Dent. 2002a;22:146–55.

    PubMed  Google Scholar 

  47. Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S134–52. https://doi.org/10.1902/jop.2015.130689.

    Article  PubMed  Google Scholar 

  48. Rios HF, et al. Emerging regenerative approaches for periodontal reconstruction: practical applications from the AAP regeneration workshop. Clin Adv Periodontics. 2015;5:40–6. https://doi.org/10.1902/cap.2015.140052.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miron RJ, et al. Twenty years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol. 2016;43:668–83. https://doi.org/10.1111/jcpe.12546.

    Article  PubMed  Google Scholar 

  50. Lindskog S. Formation of intermediate cementum. I: early mineralization of aprismatic enamel and intermediate cementum in monkey. J Craniofac Genet Dev Biol. 1982a;2:147–60.

    PubMed  Google Scholar 

  51. Lindskog S. Formation of intermediate cementum. II: a scanning electron microscopic study of the epithelial root sheath of Hertwig in monkey. J Craniofac Genet Dev Biol. 1982b;2:161–9.

    PubMed  Google Scholar 

  52. Lindskog S, Hammarstrom L. Formation of intermediate cementum. III: 3H-tryptophan and 3H-proline uptake into the epithelial root sheath of Hertwig in vitro. J Craniofac Genet Dev Biol. 1982;2:171–7.

    PubMed  Google Scholar 

  53. Slavkin HC, Bessem C, Fincham AG, Bringas P Jr, Santos V, Snead ML, Zeichner-David M. Human and mouse cementum proteins immunologically related to enamel proteins. Biochim Biophys Acta. 1989;991:12–8.

    PubMed  Google Scholar 

  54. Gestrelius S, Andersson C, Johansson AC, Persson E, Brodin A, Rydhag L, Hammarstrom L. Formulation of enamel matrix derivative for surface coating. Kinetics and cell colonization. J Clin Periodontol. 1997a;24:678–84.

    PubMed  Google Scholar 

  55. Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol. 1997b;24:685–92.

    PubMed  Google Scholar 

  56. Hammarstrom L. The role of enamel matrix proteins in the development of cementum and periodontal tissues. Ciba Found Symp. 1997b;205:246–55. discussion 255–260.

    PubMed  Google Scholar 

  57. Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24:669–77.

    PubMed  Google Scholar 

  58. Spahr A, Hammarstrom L. Response of dental follicular cells to the exposure of denuded enamel matrix in rat molars. Eur J Oral Sci. 1999;107:360–7.

    PubMed  Google Scholar 

  59. Gestrelius S, Lyngstadaas SP, Hammarstrom L. Emdogain—periodontal regeneration based on biomimicry. Clin Oral Investig. 2000;4:120–5.

    PubMed  Google Scholar 

  60. Hammarstrom L. Enamel matrix, cementum development and regeneration. J Clin Periodontol. 1997a;24:658–68.

    PubMed  Google Scholar 

  61. Chambrone L, Tatakis DN. Periodontal soft tissue root coverage procedures: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S8–51. https://doi.org/10.1902/jop.2015.130674.

    Article  PubMed  Google Scholar 

  62. Antoniades HN, Scher CD, Stiles CD. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979;76:1809–13.

    PubMed  PubMed Central  Google Scholar 

  63. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312. https://doi.org/10.1101/gad.1653708.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Giannobile WV, Hernandez RA, Finkelman RD, Ryan S, Kiritsy CP, D’Andrea M, Lynch SE. Comparative effects of platelet-derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. J Periodontal Res. 1996;31:301–12.

    PubMed  Google Scholar 

  65. Lynch SE, de Castilla GR, Williams RC, Kiritsy CP, Howell TH, Reddy MS, Antoniades HN. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol. 1991;62:458–67. https://doi.org/10.1902/jop.1991.62.7.458.

    Article  PubMed  Google Scholar 

  66. Lynch SE, Williams RC, Polson AM, Howell TH, Reddy MS, Zappa UE, Antoniades HN. A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. J Clin Periodontol. 1989;16:545–8.

    PubMed  Google Scholar 

  67. Maroo S, Murthy KR. Treatment of periodontal intrabony defects using beta-TCP alone or in combination with rhPDGF-BB: a randomized controlled clinical and radiographic study. Int J Periodontics Restorative Dent. 2014;34:841–7. https://doi.org/10.11607/prd.2030.

    Article  PubMed  Google Scholar 

  68. Mishra A, Avula H, Pathakota KR, Avula J. Efficacy of modified minimally invasive surgical technique in the treatment of human intrabony defects with or without use of rhPDGF-BB gel: a randomized controlled trial. J Clin Periodontol. 2013;40:172–9. https://doi.org/10.1111/jcpe.12030.

    Article  PubMed  Google Scholar 

  69. Thakare K, Deo V. Randomized controlled clinical study of rhPDGF-BB + beta-TCP versus HA + beta-TCP for the treatment of infrabony periodontal defects: clinical and radiographic results. Int J Periodontics Restorative Dent. 2012;32:689–96.

    PubMed  Google Scholar 

  70. Nevins M, et al. Platelet-derived growth factor promotes periodontal regeneration in localized osseous defects: 36-month extension results from a randomized, controlled, double-masked clinical trial. J Periodontol. 2013;84:456–64. https://doi.org/10.1902/jop.2012.120141.

    Article  PubMed  Google Scholar 

  71. Kao RT, Lynch SE. Stability of recombinant human platelet-derived growth factor-BB regenerated periodontal defects: sixty month clinical and radiographic observations. Clin Adv Periodont. 2011;1:132–41.

    Google Scholar 

  72. Li F, et al. Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration: a systematic review and meta-analysis. Sci Rep. 2017;7:65. https://doi.org/10.1038/s41598-017-00113-y.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv. 2006;3:647–62. https://doi.org/10.1517/17425247.3.5.647.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kawaguchi H, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res. 2010;25:2735–43. https://doi.org/10.1002/jbmr.146.

    Article  PubMed  Google Scholar 

  75. Kitamura M, et al. Randomized placebo-controlled and controlled non-inferiority phase III trials comparing trafermin, a recombinant human fibroblast growth factor 2, and enamel matrix derivative in periodontal regeneration in intrabony defects. J Bone Miner Res. 2016;31:806–14. https://doi.org/10.1002/jbmr.2738.

    Article  PubMed  Google Scholar 

  76. Lallier TE, Palaiologou AA, Yukna RA, Layman DL. The putative collagen-binding peptide P-15 promotes fibroblast attachment to root shavings but not hydroxyapatite. J Periodontol. 2003;74:458–67. https://doi.org/10.1902/jop.2003.74.4.458.

    Article  PubMed  Google Scholar 

  77. Barros RR, et al. Anorganic bovine matrix/p-15 “flow” in the treatment of periodontal defects: case series with 12 months of follow-up. J Periodontol. 2006;77:1280–7. https://doi.org/10.1902/jop.2006.050161.

    Article  PubMed  Google Scholar 

  78. Bhongade ML, Tiwari IR. A comparative evaluation of the effectiveness of an anorganic bone matrix/cell binding peptide with an open flap debridement in human infrabony defects: a clinical and radiographic study. J Contemp Dent Pract. 2007;8:25–34.

    PubMed  Google Scholar 

  79. Kasaj A, Rohrig B, Reichert C, Willershausen B. Clinical evaluation of anorganic bovine-derived hydroxyapatite matrix/cell-binding peptide (P-15) in the treatment of human infrabony defects. Clin Oral Investig. 2008;12:241–7. https://doi.org/10.1007/s00784-008-0191-y.

    Article  PubMed  Google Scholar 

  80. Queiroz AC, et al. Treatment of intrabony defects with anorganic bone matrix/p-15 or guided tissue regeneration in patients with aggressive periodontitis. Braz Dent J. 2013;24:204–12. https://doi.org/10.1590/0103-6440201302169.

    Article  PubMed  Google Scholar 

  81. Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Thirty-six month follow-up of 25 patients treated with combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell-binding peptide (P-15) bone replacement grafts in human infrabony defects. I. Clinical findings. J Periodontol. 2002b;73:123–8. https://doi.org/10.1902/jop.2002.73.1.123.

    Article  PubMed  Google Scholar 

  82. Yukna RA, et al. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-month results. J Periodontol. 1998;69:655–63. https://doi.org/10.1902/jop.1998.69.6.655.

    Article  PubMed  Google Scholar 

  83. Accorsi-Mendonca T, Conz MB, Barros TC, de Sena LA, Soares Gde A, Granjeiro JM. Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res. 2008;22:5–10.

    PubMed  Google Scholar 

  84. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:e37–44. https://doi.org/10.1016/j.tripleo.2005.07.008.

    Article  PubMed  Google Scholar 

  85. Dohan Ehrenfest DM, et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets. 2018;29:171–84. https://doi.org/10.1080/09537104.2017.1293812.

    Article  PubMed  Google Scholar 

  86. Rosello-Camps A, et al. Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:562–74. https://doi.org/10.1016/j.oooo.2015.06.035.

    Article  PubMed  Google Scholar 

  87. Castro AB, Meschi N, Temmerman A, Pinto N, Lambrechts P, Teughels W, Quirynen M. Regenerative potential of leucocyte- and platelet-rich fibrin. Part A: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and meta-analysis. J Clin Periodontol. 2017;44:67–82. https://doi.org/10.1111/jcpe.12643.

  88. Agarwal A, Gupta ND, Jain A. Platelet rich fibrin combined with decalcified freeze-dried bone allograft for the treatment of human intrabony periodontal defects: a randomized split mouth clinical trail. Acta Odontol Scand. 2016;74:36–43. https://doi.org/10.3109/00016357.2015.1035672.

    Article  PubMed  Google Scholar 

  89. Aydemir Turkal H, Demirer S, Dolgun A, Keceli HG. Evaluation of the adjunctive effect of platelet-rich fibrin to enamel matrix derivative in the treatment of intrabony defects. Six-month results of a randomized, split-mouth, controlled clinical study. J Clin Periodontol. 2016;43:955–64. https://doi.org/10.1111/jcpe.12598.

    Article  PubMed  Google Scholar 

  90. Najeeb S, Khurshid Z, Agwan MAS, Ansari SA, Zafar MS, Matinlinna JP. Regenerative potential of platelet rich fibrin (PRF) for curing intrabony periodontal defects: a systematic review of clinical studies. Tissue Eng Regen Med. 2017;14:735–42. https://doi.org/10.1007/s13770-017-0079-5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shah M, Patel J, Dave D, Shah S. Comparative evaluation of platelet-rich fibrin with demineralized freeze-dried bone allograft in periodontal infrabony defects: a randomized controlled clinical study. J Indian Soc Periodontol. 2015;19:56–60. https://doi.org/10.4103/0972-124X.145803.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Forslund C, Rueger D, Aspenberg P. A comparative dose-response study of cartilage-derived morphogenetic protein (CDMP)-1, -2 and -3 for tendon healing in rats. J Orthop Res. 2003;21:617–21. https://doi.org/10.1016/s0736-0266(03)00010-x.

    Article  PubMed  Google Scholar 

  93. Gruber RM, Ludwig A, Merten HA, Pippig S, Kramer FJ, Schliephake H. Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a pilot study in the Goettingen miniature pig comparing autogenous bone and rhGDF-5. Clin Oral Implants Res. 2009;20:175–82. https://doi.org/10.1111/j.1600-0501.2008.01628.x.

    Article  PubMed  Google Scholar 

  94. Koch FP, Becker J, Terheyden H, Capsius B, Wagner W. A prospective, randomized pilot study on the safety and efficacy of recombinant human growth and differentiation factor-5 coated onto beta-tricalcium phosphate for sinus lift augmentation. Clin Oral Implants Res. 2010;21:1301–8. https://doi.org/10.1111/j.1600-0501.2010.01949.x.

    Article  PubMed  Google Scholar 

  95. Magit DP, et al. Healos/recombinant human growth and differentiation factor-5 induces posterolateral lumbar fusion in a New Zealand white rabbit model. Spine. 2006;31:2180–8. https://doi.org/10.1097/01.brs.0000232823.82106.0a.

    Article  PubMed  Google Scholar 

  96. Stavropoulos A, Becker J, Capsius B, Acil Y, Wagner W, Terheyden H. Histological evaluation of maxillary sinus floor augmentation with recombinant human growth and differentiation factor-5-coated beta-tricalcium phosphate: results of a multicenter randomized clinical trial. J Clin Periodontol. 2011a;38:966–74. https://doi.org/10.1111/j.1600-051X.2011.01754.x.

    Article  PubMed  Google Scholar 

  97. Wolfman NM, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest. 1997;100:321–30. https://doi.org/10.1172/jci119537.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Morotome Y, Goseki-Sone M, Ishikawa I, Oida S. Gene expression of growth and differentiation factors-5, -6, and -7 in developing bovine tooth at the root forming stage. Biochem Biophys Res Commun. 1998;244:85–90. https://doi.org/10.1006/bbrc.1998.8213.

    Article  PubMed  Google Scholar 

  99. Nakamura T, Yamamoto M, Tamura M, Izumi Y. Effects of growth/differentiation factor-5 on human periodontal ligament cells. J Periodontal Res. 2003;38:597–605.

    PubMed  Google Scholar 

  100. Emerton KB, et al. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J Dent Res. 2011;90:1416–21. https://doi.org/10.1177/0022034511423665.

    Article  PubMed  Google Scholar 

  101. Lee JS, Wikesjo UM, Jung UW, Choi SH, Pippig S, Siedler M, Kim CK. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs. J Clin Periodontol. 2010;37:382–9. https://doi.org/10.1111/j.1600-051X.2010.01544.x.

    Article  PubMed  Google Scholar 

  102. Lee JS, et al. Maturation of periodontal tissues following implantation of rhGDF-5/beta-TCP in one-wall intra-bony defects in dogs: 24-week histological observations. J Clin Periodontol. 2012;39:466–74. https://doi.org/10.1111/j.1600-051X.2012.01862.x.

    Article  PubMed  Google Scholar 

  103. King GN, King N, Cruchley AT, Wozney JM, Hughes FJ. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res. 1997;76:1460–70.

    PubMed  Google Scholar 

  104. Kinoshita A, Oda S, Takahashi K, Yokota S, Ishikawa I. Periodontal regeneration by application of recombinant human bone morphogenetic protein-2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J Periodontol. 1997;68:103–9. https://doi.org/10.1902/jop.1997.68.2.103.

    Article  PubMed  Google Scholar 

  105. Ripamonti U, Heliotis M, van den Heever B, Reddi AH. Bone morphogenetic proteins induce periodontal regeneration in the baboon (Papio ursinus). J Periodontal Res. 1994;29:439–45.

    PubMed  Google Scholar 

  106. Ripamonti U, Crooks J, Petit JC, Rueger DC. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci. 2001;109:241–8.

    PubMed  Google Scholar 

  107. Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, Chan TC. Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol. 1998;69:129–37. https://doi.org/10.1902/jop.1998.69.2.129.

    Article  PubMed  Google Scholar 

  108. Chiu HC, Chiang CY, Tu HP, Wikesjo UM, Susin C, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing/regeneration in supraalveolar periodontal defects in dogs. J Clin Periodontol. 2013;40:624–30. https://doi.org/10.1111/jcpe.12075.

    Article  PubMed  Google Scholar 

  109. Dai L, et al. Different tenogenic differentiation capacities of different mesenchymal stem cells in the presence of BMP-12. J Transl Med. 2015;13:200. https://doi.org/10.1186/s12967-015-0560-7.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gelberman RH, et al. Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing. Clin Orthop Relat Res. 2017;475:2318–31. https://doi.org/10.1007/s11999-017-5369-7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Majewski M, Betz O, Ochsner PE, Liu F, Porter RM, Evans CH. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther. 2008;15:1139–46. https://doi.org/10.1038/gt.2008.48.

    Article  PubMed  Google Scholar 

  112. Perucca Orfei C et al. In vitro induction of tendon-specific markers in tendon cells, adipose- and bone marrow-derived stem cells is dependent on TGFbeta3, BMP-12 and ascorbic acid stimulation. Int J Mol Sci. 2019;20 doi:https://doi.org/10.3390/ijms20010149.

  113. Wikesjo UM, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol. 2004;31:662–70. https://doi.org/10.1111/j.1600-051X.2004.00541.x.

    Article  PubMed  Google Scholar 

  114. Takeda K, et al. Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng. 2005;11:1618–29. https://doi.org/10.1089/ten.2005.11.1618.

    Article  PubMed  Google Scholar 

  115. Takeda K, et al. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng A. 2011;17:955–67. https://doi.org/10.1089/ten.TEA.2010.0070.

    Article  Google Scholar 

  116. Cosman F, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43. https://doi.org/10.1056/NEJMoa1607948.

    Article  PubMed  Google Scholar 

  117. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104:439–46. https://doi.org/10.1172/JCI6610.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33:747–83. https://doi.org/10.1210/er.2011-1060.

    Article  PubMed  Google Scholar 

  119. Lewis JR, Schousboe JT, Prince RL. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N Engl J Med. 2018;378:194–5. https://doi.org/10.1056/NEJMc1714810.

    Article  PubMed  Google Scholar 

  120. Rosen CJ. Romosozumab—promising or practice changing? N Engl J Med. 2017;377:1479–80. https://doi.org/10.1056/NEJMe1711298.

    Article  PubMed  Google Scholar 

  121. Saag KG, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377:1417–27. https://doi.org/10.1056/NEJMoa1708322.

    Article  PubMed  Google Scholar 

  122. Saag KG, Petersen J, Grauer A. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N Engl J Med. 2018;378:195–6. https://doi.org/10.1056/NEJMc1714810.

    Article  PubMed  Google Scholar 

  123. Song GG, Lee YH. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N Engl J Med. 2018;378:194. https://doi.org/10.1056/NEJMc1714810.

    Article  PubMed  Google Scholar 

  124. Tsourdi E, Rachner TD, Hofbauer LC. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N Engl J Med. 2018;378:195. https://doi.org/10.1056/NEJMc1714810.

    Article  PubMed  Google Scholar 

  125. Kim JH, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5:13–31. https://doi.org/10.1177/1759720X12466608.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Geusens P. New insights into treatment of osteoporosis in postmenopausal women. RMD Open. 2015;1:e000051. https://doi.org/10.1136/rmdopen-2015-000051. UNSP e000051.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jawad MU, et al. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 2013;31:155–63. https://doi.org/10.1002/jor.22186.

    Article  PubMed  Google Scholar 

  128. ten Dijke P, Krause C, de Gorter DJ, Lowik CW, van Bezooijen RL. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 2008;90(Suppl 1):31–5. https://doi.org/10.2106/JBJS.G.01183.

    Article  PubMed  Google Scholar 

  129. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9. https://doi.org/10.1172/JCI28551.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li X, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7. https://doi.org/10.1074/jbc.M413274200.

    Article  PubMed  Google Scholar 

  131. Lin CW, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61. https://doi.org/10.1359/Jbmr.090411.

    Article  PubMed  Google Scholar 

  132. Virdi AS, Liu M, Sena K, Maletich J, McNulty M, Ke HZ, Sumner DR. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am. 2012;94:1670–80. https://doi.org/10.2106/JBJS.K.00344.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yu SH, Hao J, Fretwurst T, Liu M, Kostenuik P, Giannobile WV, Jin Q. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants. Tissue Eng Part A. 2018;24:1672–9. https://doi.org/10.1089/ten.TEA.2018.0013.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Taut AD, et al. Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res. 2013;28:2347–56. https://doi.org/10.1002/jbmr.1984.

    Article  PubMed  Google Scholar 

  135. Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16.

    Google Scholar 

  136. Kramer I, Keller H, Leupin O, Kneissel M. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol Metab. 2010;21:237–44. https://doi.org/10.1016/j.tem.2009.12.002.

    Article  PubMed  Google Scholar 

  137. Brixen KT, Christensen PM, Ejersted C, Langdahl BL. Teriparatide (biosynthetic human parathyroid hormone 1-34): a new paradigm in the treatment of osteoporosis. Basic Clin Pharmacol Toxicol. 2004;94:260–70. https://doi.org/10.1111/j.1742-7843.2004.pto940602.x.

    Article  PubMed  Google Scholar 

  138. Barros SP, Silva MA, Somerman MJ, Nociti FH Jr. Parathyroid hormone protects against periodontitis-associated bone loss. J Dent Res. 2003;82:791–5.

    PubMed  Google Scholar 

  139. Jung RE, Cochran DL, Domken O, Seibl R, Jones AA, Buser D, Hammerle CH. The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res. 2007;18:319–25. https://doi.org/10.1111/j.1600-0501.2007.01342.x.

    Article  PubMed  Google Scholar 

  140. Bashutski JD, et al. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med. 2010;363:2396–405. https://doi.org/10.1056/NEJMoa1005361.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bashutski JD, et al. Systemic teriparatide administration promotes osseous regeneration of an intrabony defect: a case report. Clin Adv Periodont. 2012;2:66–71. https://doi.org/10.1902/cap.2012.110043.

    Article  Google Scholar 

  142. El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34:1152–70. https://doi.org/10.1007/s11095-017-2147-x.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gage FH. Cell therapy. Nature. 1998;392:18–24.

    PubMed  Google Scholar 

  144. Cai J, Weiss ML, Rao MS. In search of “stemness”. Exp Hematol. 2004;32:585–98. https://doi.org/10.1016/j.exphem.2004.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  PubMed  Google Scholar 

  146. Hynes K, Menichanin D, Bright R, Ivanovski S, Hutmacher DW, Gronthos S, Bartold PM. Induced pluripotent stem cells: a new frontier for stem cells in dentistry. J Dent Res. 2015;94:1508–15. https://doi.org/10.1177/0022034515599769.

    Article  PubMed  Google Scholar 

  147. Cho Y, et al. Direct gingival fibroblast/osteoblast transdifferentiation via epigenetics. J Dent Res. 2017;96:555–61. https://doi.org/10.1177/0022034516686745.

    Article  PubMed  Google Scholar 

  148. Graf T, Enver T. Forcing cells to change lineages. Nature. 2009;462:587–94. https://doi.org/10.1038/nature08533.

    Article  PubMed  Google Scholar 

  149. Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12:79–89. https://doi.org/10.1038/nrm3043.

    Article  PubMed  Google Scholar 

  150. Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK, Gorskaya UF, Kuralesova AI, Latzinik NW, Gerasimow UW. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol. 1978;6:440–4.

    PubMed  Google Scholar 

  151. Polymeri A, Giannobile WV, Kaigler D. Bone marrow stromal stem cells in tissue engineering and regenerative medicine. Horm Metab Res. 2016;48:700–13. https://doi.org/10.1055/s-0042-118458.

    Article  PubMed  Google Scholar 

  152. Steinert AF, Rackwitz L, Gilbert F, Noth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med. 2012;1:237–47. https://doi.org/10.5966/sctm.2011-0036.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30. https://doi.org/10.1073/pnas.240309797.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:1205–16. https://doi.org/10.1002/term.1899.

    Article  PubMed  Google Scholar 

  155. Meza G, Urrejola D, Saint Jean N, Inostroza C, Lopez V, Khoury M, Brizuela C. Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: a case report. J Endod. 2019;45:144–9. https://doi.org/10.1016/j.joen.2018.11.009.

    Article  PubMed  Google Scholar 

  156. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61. https://doi.org/10.1186/s13287-017-0506-5.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Piva E, et al. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod. 2017;43:568–74. https://doi.org/10.1016/j.joen.2016.11.018.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nyman S, Gottlow J, Karring T, Lindhe J. The regenerative potential of the periodontal-ligament—an experimental-study in the monkey. J Clin Periodontol. 1982a;9:257–65. https://doi.org/10.1111/j.1600-051X.1982.tb02065.x.

    Article  PubMed  Google Scholar 

  159. Seo BM, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55. https://doi.org/10.1016/s0140-6736(04)16627-0.

    Article  PubMed  Google Scholar 

  160. Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS. Plasticity of stem cells derived from adult periodontal ligament. Regen Med. 2009;4:809–21. https://doi.org/10.2217/rme.09.55.

    Article  PubMed  Google Scholar 

  161. Liu Y, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells (Dayton, Ohio). 2008;26:1065–73. https://doi.org/10.1634/stemcells.2007-0734.

    Article  Google Scholar 

  162. Yeasmin S, Ceccarelli J, Vigen M, Carrion B, Putnam AJ, Tarle SA, Kaigler D. Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells. Tissue Eng A. 2014;20:1188–96. https://doi.org/10.1089/ten.TEA.2013.0512.

    Article  Google Scholar 

  163. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12. https://doi.org/10.1073/pnas.0937635100.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yamada Y, Ueda M, Hibi H, Nagasaka T. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant. 2004;13:343–55.

    PubMed  Google Scholar 

  165. Zheng Y, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res. 2009;88:249–54. https://doi.org/10.1177/0022034509333804.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cahill DR, Marks SC. Tooth eruption—evidence for the central role of the dental follicle. J Oral Pathol Med. 1980;9:189–200. https://doi.org/10.1111/j.1600-0714.1980.tb00377.x.

    Article  Google Scholar 

  167. Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration trends. Cell Biol. 2010;20:715–22. https://doi.org/10.1016/j.tcb.2010.09.012.

    Article  Google Scholar 

  168. Guo W, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials. 2012;33:1291–302. https://doi.org/10.1016/j.biomaterials.2011.09.068.

    Article  PubMed  Google Scholar 

  169. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010;52:541–52.

    PubMed  Google Scholar 

  170. Steimberg N, et al. Advanced 3D models cultured to investigate mesenchymal stromal cells of the human dental follicle. Tissue Eng Part C Methods. 2018;24:187–96. https://doi.org/10.1089/ten.TEC.2017.0428.

    Article  PubMed  Google Scholar 

  171. Malhotra N. Induced pluripotent stem (iPS) cells in dentistry: a review. Int J Stem Cells. 2016;9:176–85. https://doi.org/10.15283/ijsc16029.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Cho YD, Ryoo HM. Trans-differentiation via epigenetics: a new paradigm in the bone regeneration. J Bone Metab. 2018;25:9–13. https://doi.org/10.11005/jbm.2018.25.1.9.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cho YD, et al. Epigenetic priming confers direct cell trans-differentiation from adipocyte to osteoblast in a transgene-free state. J Cell Physiol. 2016;231:1484–94. https://doi.org/10.1002/jcp.25183.

    Article  PubMed  Google Scholar 

  174. Yamamoto K, et al. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A. 2015;112:6152–7. https://doi.org/10.1073/pnas.1420713112.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Shanbhag S, Suliman S, Pandis N, Stavropoulos A, Sanz M, Mustafa K. Cell therapy for orofacial bone regeneration: a systematic review and meta-analysis. J Clin Periodontol. 2019;46(Suppl 21):162–82. https://doi.org/10.1111/jcpe.13049.

    Article  PubMed  Google Scholar 

  176. Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101. https://doi.org/10.1016/j.bone.2014.07.033.

    Article  PubMed  Google Scholar 

  177. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015;14:737–44. https://doi.org/10.1038/nmat4294.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kaigler D, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22:767–77. https://doi.org/10.3727/096368912x652968.

    Article  PubMed  Google Scholar 

  179. Kaigler D, et al. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: a randomized clinical trial. J Bone Miner Res. 2015;30:1206–16. https://doi.org/10.1002/jbmr.2464.

    Article  PubMed  Google Scholar 

  180. Bajestan MN, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: a randomized controlled, clinical trial. Clin Implant Dent Relat Res. 2017;19:793–801. https://doi.org/10.1111/cid.12506.

    Article  PubMed  Google Scholar 

  181. d’Aquino R, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cells Mater. 2009;18:75–83. https://doi.org/10.22203/eCM.v018a07.

    Article  Google Scholar 

  182. Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11:140–50. https://doi.org/10.1038/nrendo.2014.234.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zou D, et al. Autologous ilium grafts: long-term results on immediate or staged functional rehabilitation of mandibular segmental defects using dental implants after tumor resection. Clin Implant Dent Relat Res. 2015;17:779–89. https://doi.org/10.1111/cid.12169.

    Article  PubMed  Google Scholar 

  184. Mason S, Tarle SA, Osibin W, Kinfu Y, Kaigler D. Standardization and safety of alveolar bone-derived stem cell isolation. J Dent Res. 2014;93:55–61. https://doi.org/10.1177/0022034513510530.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94:153S–7S. https://doi.org/10.1177/0022034515588303.

    Article  PubMed  Google Scholar 

  186. Yamada Y, et al. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells (Dayton, Ohio). 2013a;31:572–80. https://doi.org/10.1002/stem.1300.

    Article  Google Scholar 

  187. Chen FM, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther. 2016;7:33. https://doi.org/10.1186/s13287-016-0288-1.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Feng F, et al. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 2010;16:20–8.

    PubMed  PubMed Central  Google Scholar 

  189. Sonoyama W, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79. https://doi.org/10.1371/journal.pone.0000079.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, Giannobile WV. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials. 2010;31:5945–52. https://doi.org/10.1016/j.biomaterials.2010.04.027.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Park CH, et al. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014;20(7):533–42. https://doi.org/10.1089/ten.TEC.2013.0619.

    Article  PubMed  Google Scholar 

  192. McGuire MK, et al. Living cellular construct for increasing the width of keratinized gingiva: results from a randomized, within-patient, controlled trial. J Periodontol. 2011;82:1414–23. https://doi.org/10.1902/jop.2011.100671.

    Article  PubMed  Google Scholar 

  193. McGuire MK, Scheyer ET, Nunn ME, Lavin PT. A pilot study to evaluate a tissue-engineered bilayered cell therapy as an alternative to tissue from the palate. J Periodontol. 2008;79:1847–56. https://doi.org/10.1902/jop.2008.080017.

    Article  PubMed  Google Scholar 

  194. Morelli T, et al. Angiogenic biomarkers and healing of living cellular constructs. J Dent Res. 2011;90:456–62. https://doi.org/10.1177/0022034510389334.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Scheyer ET, et al. Generation of site-appropriate tissue by a living cellular sheet in the treatment of mucogingival defects. J Periodontol. 2014;85:e57–64. https://doi.org/10.1902/jop.2013.130348.

    Article  PubMed  Google Scholar 

  196. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164–75. https://doi.org/10.1016/j.biomaterials.2015.05.043.

    Article  PubMed  Google Scholar 

  197. Yamada Y, Nakamura S, Ueda M, Ito K. Papilla regeneration by injectable stem cell therapy with regenerative medicine: long-term clinical prognosis. J Tissue Eng Regen Med. 2013b;9(3):305–9. https://doi.org/10.1002/term.1737.

    Article  PubMed  Google Scholar 

  198. Galler KM, Krastl G, Simon S, Van Gorp G, Meschi N, Vahedi B, Lambrechts P. European Society of Endodontology position statement: revitalization procedures. Int Endod J. 2016;49:717–23. https://doi.org/10.1111/iej.12629.

    Article  PubMed  Google Scholar 

  199. Bottino MC, Pankajakshan D, Nor JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin N Am. 2017;61:689–711. https://doi.org/10.1016/j.cden.2017.06.009.

    Article  PubMed  Google Scholar 

  200. Nakashima M, Iohara K, Bottino MC, Fouad AF, Nor JE, Huang GT. Animal models for stem cell-based pulp regeneration: foundation for human clinical applications tissue. Tissue Eng Part B Rev. 2019;25(2):100–13. https://doi.org/10.1089/ten.TEB.2018.0194.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bottino MC, Albuquerque MTP, Azabi A, Munchow EA, Spolnik KJ, Nor JE, Edwards PC. A novel patient-specific three-dimensional drug delivery construct for regenerative endodontics. J Biomed Mater Res B Appl Biomater. 2019;107(5):1576–86. https://doi.org/10.1002/jbm.b.34250.

    Article  PubMed  Google Scholar 

  202. Kenry, Lim CT. Nanofiber technology: current status and emerging developments progress in polymer. Science. 2017;70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Osteology Foundation (14-031) and NIH/NIDCR R03DE027146 to ZL and NIH/NIDCR U24 DE026915 to WVG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, Z. et al. (2020). Protein- and Cell-Based Therapies for Periodontal Regeneration. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics