Skip to main content

Periodontal Pathogen Sialometabolic Activity in Periodontitis

  • Chapter
  • First Online:
Emerging Therapies in Periodontics

Abstract

Periodontitis is a common bacterially induced inflammatory condition that damages the tooth-supporting apparatus and negatively impacts the systemic health. It affects over 700 million people worldwide with an estimated economic burden totaling to $442 billion annually. A bacterial triad in the subgingival niche comprising of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia is very influential in the development of periodontitis. Significantly, all these three pathogens produce a sialidase enzyme that can cleave terminal sialic acid residue from host-derived sialoglycoproteins, such as present on the surface of oral epithelial cells and in saliva and gingival crevicular fluid. This ability to release and utilize sialic acid from host glycoproteins is crucial for their growth and immune evasion and survival strategies. In addition, sialic acid cleavage can cause immune dysfunction and disruption of tissue integrity and thus exacerbate periodontal inflammation in various ways. Here, we propose that inhibition of pathogen-derived sialidase activity with sialidase-targeting pharmacological drugs may be an attractive adjunct therapy in the treatment of periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–53.

    Article  Google Scholar 

  2. Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. J Dent Res. 2015;94:1355–61.

    Article  Google Scholar 

  3. Sharma A. Genome functions of Tannerella forsythia in bacterial communities. In: Kolenbrander PE, editor. Oral microbial communities: genome inquiry and interspecies communication. Washington, DC: American Society for Microbiology; 2011. p. 135.

    Google Scholar 

  4. Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999;1473:4–8.

    Article  Google Scholar 

  5. Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol. 2012;27:11–22.

    Article  Google Scholar 

  6. Moncla BJ, Braham P, Hillier SL. Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J Clin Microbiol. 1990;28:422–5.

    Article  Google Scholar 

  7. Beighton D, Whiley RA. Sialidase activity of the “Streptococcus milleri group” and other viridans group streptococci. J Clin Microbiol. 1990;28:1431–3.

    Article  Google Scholar 

  8. Byers HL, Homer KA, Beighton D. Utilization of sialic acid by viridans streptococci. J Dent Res. 1996;75:1564–71.

    Article  Google Scholar 

  9. Imaki H, Tomoyasu T, Yamamoto N, Taue C, Masuda S, Takao A, Maeda N, Tabata A, Whiley RA, Nagamune H. Identification and characterization of a novel secreted glycosidase with multiple glycosidase activities in Streptococcus intermedius. J Bacteriol. 2014;196:2817–26.

    Article  Google Scholar 

  10. Wong A, Grau MA, Singh AK, Woodiga SA, King SJ. The role of neuraminidase-producing bacteria in exposing cryptic carbohydrate receptors for Streptococcus gordonii adherence. Infect Immun. 2018;86(7). https://doi.org/10.1128/IAI.00068-18.

  11. Gul SS, Griffiths GS, Stafford GP, Al-Zubidi MI, Rawlinson A, Douglas CWI. Investigation of a novel predictive biomarker profile for the outcome of periodontal treatment. J Periodontol. 2017;88:1135–44.

    Article  Google Scholar 

  12. Roy S, Honma K, Douglas CWI, Sharma A, Stafford GP. Role of sialidase in glycoprotein utilization by Tannerella forsythia. Microbiology. 2011;157:3195–202.

    Article  Google Scholar 

  13. Honma K, Mishima E, Sharma A. Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun. 2011;79:393–401.

    Article  Google Scholar 

  14. Honma K, Ruscitto A, Frey AM, Stafford GP, Sharma A. Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells. Microb Pathog. 2015;94:12–20.

    Article  Google Scholar 

  15. Li C, Kurniyati HB, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun. 2012;80:3–13.

    Article  Google Scholar 

  16. Aruni W, Vanterpool E, Osbourne D, Roy F, Muthiah A, Dou Y, Fletcher HM. Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis. Infect Immun. 2011;79:2779–91.

    Article  Google Scholar 

  17. Kurniyati K, Zhang W, Zhang K, Li C. A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochete Treponema denticola. Mol Microbiol. 2013;89:842–56.

    Article  Google Scholar 

  18. Feng C, Stamatos NM, Dragan AI, Medvedev A, Whitford M, Zhang L, Song C, Rallabhandi P, Cole L, Nhu QM, Vogel SN, Geddes CD, Cross AS. Sialyl residues modulate LPS-mediated signaling through the toll-like receptor 4 complex. PLoS One. 2012;7:e32359.

    Article  Google Scholar 

  19. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol. 2011;29:428–35.

    Article  Google Scholar 

  20. Iijima R, Takahashi H, Namme R, Ikegami S, Yamazaki M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004;561:163–6.

    Article  Google Scholar 

  21. Iijima R, Takahashi H, Ikegami S, Yamazaki M. Characterization of the reaction between sialic acid (N-acetylneuraminic acid) and hydrogen peroxide. Biol Pharm Bull. 2007;30:580–2.

    Article  Google Scholar 

  22. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.

    Article  Google Scholar 

  23. Stafford GP, Chaudhuri RR, Haraszthy V, Friedrich V, Schaffer C, Ruscitto A, Honma K, Sharma A. Draft genome sequences of three clinical isolates of Tannerella forsythia isolated from subgingival plaque from periodontitis patients in the United States. Genome Announc. 2016;4:e01286–16.

    Article  Google Scholar 

  24. Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-Garcia DC, Eppler E, Seiler R, Hansen LH, Castruita JA, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM Jr, Collins MJ, Gilbert MT, Ruhli F, Cappellini E. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–44. https://doi.org/10.1038/ng.2906.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frey AM, Satur MJ, Phansopa C, Parker JL, Bradshaw D, Pratten J, Stafford GP. Evidence for a novel carbohydrate binding module (CBM) of Tannerella forsythia NanH sialidase, key to interactions at the host-pathogen interface. Biochem J. 2018;475(6):1159–76. https://doi.org/10.1042/BCJ20170592.

    Article  PubMed  Google Scholar 

  26. Phansopa C, Kozak RP, Liew LP, Frey AM, Farmilo T, Parker JL, Kelly DJ, Emery RJ, Thomson RI, Royle L, Gardner RA, Spencer DI, Stafford GP. Characterization of a sialate-O-acetylesterase (NanS) from the oral pathogen Tannerella forsythia that enhances sialic acid release by NanH, its cognate sialidase. Biochem J. 2015;472:157–67.

    Article  Google Scholar 

  27. Phansopa C, Roy S, Rafferty JB, Douglas CW, Pandhal J, Wright PC, Kelly DJ, Stafford GP. Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J. 2014;458:499–511.

    Article  Google Scholar 

  28. Roy S, Douglas CI, Stafford GP. A novel sialic acid utilisation and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol. 2010;192:2285–93.

    Article  Google Scholar 

  29. Roy S, Phansopa C, Stafford P, Honma K, Douglas CW, Sharma A, Stafford GP. Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates. FEMS Immunol Med Microbiol. 2012;65:116–20.

    Article  Google Scholar 

  30. Severi E, Muller A, Potts JR, Leech A, Williamson D, Wilson KS, Thomas GH. Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT. J Biol Chem. 2008;283:4841–9.

    Article  Google Scholar 

  31. Ruscitto A, Honma K, Veeramachineni VM, Nishikawa K, Stafford GP, Sharma A. Regulation and molecular basis of environmental muropeptide uptake and utilization in fastidious oral anaerobe Tannerella forsythia. Front Microbiol. 2017;8:648.

    Article  Google Scholar 

  32. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8:1659–72.

    Article  Google Scholar 

  33. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898–908.

    Article  Google Scholar 

  34. Inui T, Walker LC, Dodds MW, Hanley AB. Extracellular glycoside hydrolase activities in the human oral cavity. Appl Environ Microbiol. 2015;81:5471–6.

    Article  Google Scholar 

  35. Kim JH, Ryu YB, Lee WS, Kim YH. Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome. Bioorg Med Chem. 2014;22:6047–52.

    Article  Google Scholar 

  36. Smutova V, Albohy A, Pan X, Korchagina E, Miyagi T, Bovin N, Cairo CW, Pshezhetsky AV. Structural basis for substrate specificity of mammalian neuraminidases. PLoS One. 2014;9:e106320.

    Article  Google Scholar 

  37. Miyagi T, Wada T, Yamaguchi K, Hata K, Shiozaki K. Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem. 2008;144:279–85.

    Article  Google Scholar 

  38. Kawamura S, Sato I, Wada T, Yamaguchi K, Li Y, Li D, Zhao X, Ueno S, Aoki H, Tochigi T, Kuwahara M, Kitamura T, Takahashi K, Moriya S, Miyagi T. Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ. 2012;19:170–9.

    Article  Google Scholar 

  39. Khedri Z, Li Y, Cao H, Qu J, Yu H, Muthana MM, Chen X. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Org Biomol Chem. 2012;10:6112–20.

    Article  Google Scholar 

Download references

Acknowledgments

The work from AS and coworkers cited in the chapter was supported by grants (DE014749 and DE022870) from the NIDCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashu Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stafford, G.P., Sharma, A. (2020). Periodontal Pathogen Sialometabolic Activity in Periodontitis. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics