Skip to main content

Model Test Entity

  • Chapter
  • First Online:
Mechanics of Flow Similarities
  • 374 Accesses

Abstract

When humans have built large technical devices like bridges, ships, buildings, embankment dams, airplanes, space planes, reactors for chemical purposes, hydraulic engines (pumps, compressors, turbines) etc. there was a need to fabricate geometrically similar models of these devices in order to investigate and test their physical behavior in ground based test facilities. The main question from the physical point of view in this regard is under what conditions are the experimental test results, received with geometrically similar models in test facilities, transferable to the situation of the original devices? We define the three similarity rules, which must be kept for a suitable testing of the physics of originals in test facilities, [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These are for example inertial, gravitational, friction and pressure forces.

  2. 2.

    The relation for the density is given by \(\rho _1/\rho _2 = \alpha _3/\alpha _1^3\).

  3. 3.

    Good examples are the parameter \(\rho \cdot L\), which comes into play for hypersonic flows with non-equilibrium real gas effects (binary scaling parameter), and also the rarefaction parameter \(\bar{V}= M/\sqrt{Re \cdot L}\), characterising the separation length of concave flow situations (e.g.: deflected aerodynamic control surfaces) in high enthalpy flows, [4, 5].

  4. 4.

    Cold means that the freestream total temperature or enthalpy is much lower than the one the vehicle encounters during real flight.

  5. 5.

    German Aerospace Establishment.

  6. 6.

    Office National D’Etudes et de Recherches Aerospatiales, France.

  7. 7.

    Generation of hot surfaces during re-entry flight of space vehicles.

References

  1. Braun, J.: Strömungsmaschinen als Kraft- und Arbeitsmaschinen, Teil 1 Hydraulische Maschinen. Books on Demand, Norderstedt, Germany (2015)

    Google Scholar 

  2. Görtler, H.: Dimensionsanalyse. Theorie der physikalischen Dimensionen und Anwendungen. Springer, Berlin (1975)

    MATH  Google Scholar 

  3. Beitz, W., Küttner, K.-H. (eds.): Dubbel: Taschenbuch für den Maschinenbau, 17th edn. Springer, Berlin (1990)

    Google Scholar 

  4. Krek, R.M., Eitelberg, G., Kastell, D.: Hyperboloid Flare Experiments in the HEG Facility. Deutsche Forschungsanstalt für Luft- und Raumfahrt, DLR-IB 223-95 A 43 (1995)

    Google Scholar 

  5. Devezeaux, D., Tribot, J.P.: Synthesis of contribution to the hyperboloid-flare F4 test case TC1.C within the Manned Space Transportation Program Workshop 1996. ONERA, Technical Report N\(^{\circ }\) RT 92/6121 SY (1997)

    Google Scholar 

  6. Hirschel, E.H.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2014)

    Book  Google Scholar 

  7. Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, vol. 1. Springer, Berlin (1967)

    Book  Google Scholar 

  8. Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn. Springer, Berlin (2015)

    Google Scholar 

  9. Weiland, C.: Computational Space Flight Mechanics. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Brenner, G., Hannemann, K., Kordulla, W.: The Hyperboloid-Flare Experiment - Summary of numerical results. DLR Internal Report IB 221-93 C 28 (1993)

    Google Scholar 

  11. Bousquet, J.M., Faubert, A.: Synthesis of hyperboloid-flare results in R5Ch, R3Ch and S4MA wind tunnel conditions. ONERA, Rapport Technique n\(^{\circ }\) RT 63/6122 AY, HT-TN-E-1-314-ONER (1995)

    Google Scholar 

  12. Sagnier, P.: Synthesis of hyperboloid-flare experiments in ONERA F4, S4MA, R3Ch, R5Ch wind tunnels and DLR H2K, RWG wind tunnels. ONERA, Rapport Technique n\(^{\circ }\) RT 72/6121 SY (1995)

    Google Scholar 

  13. Weiland, C.: Aerodynamic Data of Space Vehicles. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin and AIAA (Progress in Astronautics and Aeronautics), Reston USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Weiland .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiland, C. (2020). Model Test Entity. In: Mechanics of Flow Similarities. Springer, Cham. https://doi.org/10.1007/978-3-030-42930-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42930-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42929-4

  • Online ISBN: 978-3-030-42930-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics