Skip to main content

Dimensionless Numbers—Similarity Parameters: A Look at the Name Holders

  • Chapter
  • First Online:
Mechanics of Flow Similarities
  • 424 Accesses

Abstract

In Chaps. 2, 3 and 4 we presented various methods with which a count of dimensional numbers, depending on different methods, can be derived. Obviously, Buckingham’s \(\varPi \)theorem has, there is no doubt, the capacity with the greatest possible extent. Historically many of the similarity quantities for the first time were formulated as a single event, in particular those known from the 18th and the first part of the 19th century. Therefore, the appearance of the dimensionless numbers obviously was an evolutionary process. Most of the power products, later noted as dimensionless numbers or similarity parameters, were established before the mathematical calculus of the analysis of dimension, Buckingham’s \(\varPi \)theorem, was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the Chaps. 2, 3 and 4 we distinguish the quantities for dimensional reference values (quantities with a bar \( \Longrightarrow \bar{x}\)), dimensional variables (clean quantities \(\Longrightarrow x\)) and dimensionless variables (quantities with a prime \(\Longrightarrow x^\prime \)). In this chapter we mainly use dimensional reference values (\(\bar{x}\)). For convenience the bar is always dropped.

  2. 2.

    Contributions to mathematics: geometry, trigonometry, graph theory, number theory, topology, infinitesimal calculus, algebra. Contributions to physics: continuum mechanics (fluid dynamics), optics, lunar theory, stability theory, ballistics, equation of gyroscope.

  3. 3.

    Note: The wave length is that of the cross wave. For definition see [8, 9].

  4. 4.

    Society of German Engineers.

  5. 5.

    Sometimes also described as the ratio of lift force to friction force.

  6. 6.

    The transport coefficient of the momentum is replaced by the transport coefficient of the energy.

  7. 7.

    There exists an analogue Péclet number with respect to mass transport, namely \(\displaystyle Pe^\prime = \frac{lu}{D_{ij}}\) with \(D_{ij}\) the binary diffusivity.

  8. 8.

    This equation can be derived from the energy equation, where only the heat conduction and the dissipation play a role (by integration of \(\displaystyle \frac{\partial }{\partial y} \lambda \frac{\partial T}{\partial y}\)), and when the boundary conditions of the Couette flow are applied, see Fig. 6.14.

  9. 9.

    Due to tragic circumstances he obviously took his life.

  10. 10.

    The major field of application of the Damköhler numbers consists in the discipline of chemical engineering (chemical reactor technology).

  11. 11.

    \(\rho \) the density in front of the bow shock, normally the freestream value and \(\hat{\rho }\) the density behind the bow shock.

  12. 12.

    When the fluid elements pass the bow shock, the chemical reactions are initiated due to the strong jump of the thermodynamic variables pressure, density and temperature inside the shock.

  13. 13.

    The temperatures forming the difference \(\varDelta T\) are defined with respect to the flow case (heat transfer case) considered, e.g. for \(T_{ref}\) often the recovery temperature \(T_r\) is applied, which seems to be problematic, in particular when the wall temperature tends towards the recovery temperature.

  14. 14.

    The second category can be found on Sect. 6.9.1.

  15. 15.

    Some Prandtl numbers:

    \(Pr_{\,liquid \,metals}<< 1\), \(Pr_{gases} \thickapprox 0.7\), \(Pr_{fluids} \thickapprox 7\), \(Pr_{\, tough \, fluids, \, oils} \thickapprox 70\).

  16. 16.

    We distinguish between an averaged Nusselt number, called global Nusselt number \(Nu_{glob} \equiv Nu_L\), and a local Nusselt number \(Nu_{loc} \equiv Nu_x\), which depends on a x-coordinate representing the main stream direction.

  17. 17.

    The specific heat is denoted by \(c_p\) for gases at constant pressure and c for fluids.

  18. 18.

    See Eqs. (2.12), (2.39), (2.46), (3.9).

  19. 19.

    These were the famous Antibes Workshops, [41, 46].

  20. 20.

    This configuration was designed by the Space Department of Messerschmitt—Bölkow—Blohm, Ottobrunn, Germany.

  21. 21.

    The negative values of the Stanton number in Fig. 6.23 (below) are due to another definition of St compared to Eqs. (6.22)–(6.24), namely \(\displaystyle St = \frac{- \lambda \frac{\partial T}{\partial n}}{\rho _\infty u_\infty (h_0 - h_w)}\), which generates a negative sign.

  22. 22.

    These are some of the most critical aspects of hypersonic flight as the Columbia disaster has shown in 2003.

  23. 23.

    The fraying of the color filaments on the rear part of the upper side (leeward side) of the combat aircraft is due to the vortex break down and the subsequent turbulence onset.

  24. 24.

    For the flow along a flat plate with \(T_w = const\), \(\delta _m\) and \(\delta _T\) are identical for \(Pr = 1\).

  25. 25.

    The heat transfer coefficient between fluid and plate goes to infinity, from which follows, that the temperature of the fluid is equal to the temperature of the wall!.

  26. 26.

    The Reynolds number built with these values is \(Re = 3 \cdot 10^6\).

  27. 27.

    We have used here the Euler number in the form \(\displaystyle Eu = \frac{\varDelta p}{\rho u^2}\).

  28. 28.

    Also known as Laser-Doppler-Anemometry.

  29. 29.

    We use here the Greek letter \(\lambda \) to denote the free mean path, since it is common in the literature, knowing that \(\lambda \) is also used for the heat conduction coefficient.

  30. 30.

    National Aeronautics and Space Administration.

  31. 31.

    European Space Agency.

  32. 32.

    J. Ackeret, 1898–1981, obviously was the first, who in his habilitation treatise has named this ratio Mach number, [100].

  33. 33.

    In [98] is reported that E. Mach has believed, when he saw the photographs at the first time, that air mass was compressed in the front part (tip) of the projectile. In contrary to that P. Salcher shall have argued, that it looks more than a bow wave of a ship, which was obviously the right interpretation.

  34. 34.

    Archimedes, the famous Greek universal genius, about 287–212 B.C.

  35. 35.

    E. C. Bingham, an US chemist (1878–1945).

  36. 36.

    J.-B. Biot, a French physicist (1774–1862).

  37. 37.

    The reference length is mostly defined by the ratio between the volume of the body to the surface of the body \(l = V_{body} / S_{body}\).

  38. 38.

    The definition of the Nusselt number, Eq. (2.39), is formally the same as the Biot number, but in the Nusselt number definition the thermal conductivity is that of the fluid and in the Biot number definition that of the solid.

  39. 39.

    M. E. A. Bodenstein, a German physicist (1871–1942).

  40. 40.

    H. C. Brinkman, a Dutch physicist (1908–1961).

  41. 41.

    G. Galilei, the famous Italian astronomer (1564–1642).

  42. 42.

    P.-S. Laplace, the famous French mathematician and physicist (1749–1827).

  43. 43.

    W. Ohnesorge, a German engineer (1901–1976).

  44. 44.

    L. F. Richardson, a British mathematician and meteorologist (1881–1953).

  45. 45.

    In meteorology some variants of the Richardson number are used, which are denoted by flux Richardson number, gradient Richardson number, bulk Richardson number. For example, the gradient Richardson number characterizes the dynamic stability of a meteorological flow and reads \(\displaystyle Ri_g = \frac{g}{T_v} \cdot \frac{\partial T_v}{\partial z}/\left( \left( \frac{\partial U}{\partial z}\right) ^2 + \left( \frac{\partial V}{\partial z}\right) ^2\right) \).

  46. 46.

    A. Roshko, an US physicist and engineer (1923–2017).

  47. 47.

    T. K. Sherwood, an US engineer of chemistry (1903–1976).

References

  1. Calinger, R.S.: Mathematical Genius. Mathematical Genius in the Enlightenment. Princeton University Press, Princeton (2015)

    MATH  Google Scholar 

  2. Gautschi, W.: Leonhard Euler: His Life, the Man, and His Work. SIAM Rev. 50(1), 3–33 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Sommerfeld, A.: Mechanik der deformierbaren Medien, Akademische Verlagsgesellschaft Geest & Portig (1954)

    Google Scholar 

  4. Zierep, J.: Ähnlichkeitsgesetze und Modellregeln der Strömungsmechanik. G. Braun Verlag, Karlsruhe (1972)

    MATH  Google Scholar 

  5. N.N.: Grace’s Guide to British Industrial History: William Froude. https://www.gracesguide.co.uk/William_Froude

  6. Weber, M.: In: Jahrbuch der Schiffbautechnischen Gesellschaft (1919)

    Google Scholar 

  7. Herwig, H.: Strömungsmechanik A - Z. Vieweg Verlag, Wiesbaden (2001)

    Google Scholar 

  8. Krüger, S.: Vorlesungsmanuskript. Universität Hamburg-Harburg (2009)

    Google Scholar 

  9. Saunders, H.E.: Hydrodynamics in Ship Design, vol. 2 (1957)

    Google Scholar 

  10. Weber, M.: Jahrbuch der Schiffbautechnischen Gesellschaft, 274–388 (1930)

    Google Scholar 

  11. Hüttl, C.: Einfluß der Sprayausbreitung und Gemischbildung auf die Verbrennung von Biodieselgemischen. In: Brüggemann, D. (ed.) Thermodynamik, vol. 19. Logos Verlag, Berlin (2011)

    Google Scholar 

  12. Pfeifer, C.: Experimentelle Untersuchungen von Einflußfaktoren auf die Selbstzündung von gasförmigen und flüssigen Brennstofffreistrahlen. Karlsruhe Institute of Technology, Scientific Publishing, Scientific Report 7555 (2010)

    Google Scholar 

  13. Ranz, W.E.: On Sprays and Spraying: A Survey of Spray Technology for Research and Development Engineers. Pennsylvania State Univ. USA, Bull. 1956, 655 (1956)

    Google Scholar 

  14. Lin, S.P., Reitz, R.D.: Drop and Spray Formation from a Liquid Jet. Annual Review of Fluid Mechanics 30, 85–105 (1998)

    Google Scholar 

  15. Levebvre, A.H.: Gas Turbine Combustion. Purdue University, Indiana, USA, Thermal and Combustion Center (1998)

    Google Scholar 

  16. Wauer, J.: Die Mechanik und ihre Fachvertreter an der Universität Karlsruhe. KIT Scientific Publishing, Karlsruhe (2017)

    Google Scholar 

  17. Böckh, V., P., Wenzel, T.: Wärmeübertragung. Springer Vieweg, Berlin (2014)

    Google Scholar 

  18. Polifke, W., Kopitz, J.: Wärmeübertragung Grundlagen, analytische und numerische Methoden. Pearson Studium, Munich (2009)

    Google Scholar 

  19. Jackson, J.D.: Osborne Reynolds - Scientist, Engineer and Pioneer. Proc. Roy. Soc. Lond. A, 451, 49–86 (1995)

    Google Scholar 

  20. Fairclough, C.: Happy Birthday, Osborne Reynolds (2017). https://www.comsol.com/blogs/happy-birthday-osborne-reynolds/

  21. Reynolds, O.: An experimental investigation of the circumstances which determine wether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. R. Soc., Phil. Trans. (1883)

    Google Scholar 

  22. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. R. Soc., Phil. Trans. (1895)

    Google Scholar 

  23. Oswatitsch, K.: Österreich. Ing. Zeitschrift 6, 421–426 (1963)

    Google Scholar 

  24. Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn. Springer, Berlin (2015)

    Google Scholar 

  25. van der Bliek, J.A.: The European Transonic Wind Tunnel. Buch und Offsetdruck Thierbach (1996)

    Google Scholar 

  26. www.dlr.de/mp/Portaldata/22/Resources//9_Turbulenz_in_Fluessigkeiten.pdf

  27. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California (1982)

    Google Scholar 

  28. Roberts, B.M.: Jean Claude Eugéne Péclet. http://www.hevac-heritage.org/built_environment/biographies/surnames_M-R/peclet/P1-PECLET.pdf

  29. Billington, N.S., Roberts, B.M.: Building Services Engineering: A Review of Development. Pergamon Press, Oxford (1982)

    Google Scholar 

  30. Zhao, C., Hobbs, B.E., Ord, A.: Convective and Advective Heat Transfer in Geological Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  31. Whipp, D.: Thermal processes in the lithosphere. https://matskut.helsinki.fi/bitstram/handle/123456789/831/Lecture%208.5%20-%20The%20Peclet%20number.pdf?sequence=1

  32. Eckert, E.R.G.: Wärme- und Stoffaustausch. Springer, Berlin (1966)

    Book  Google Scholar 

  33. Minkowycz, W.J.: Professor Ernst R.G. Eckert (1904-2004). Int. J. Heat Mass Trans. Elsevier 49 (2006)

    Google Scholar 

  34. Pfender, E.: Memorial Tributes. The National Academic Press, vol. 11, 108–113 (2007)

    Google Scholar 

  35. Inger, G.R.: Scaling Nonequilibrium-Reacting Flows: The Legacy of Gerhard Damköhler. J. Spacecraft Rockets 38(2) (2001)

    Google Scholar 

  36. Wicke, E.: Gerhard Damköhler - Begründer der Chemischen Reaktionstechnik. Chem.-Ing.-Tech. 56(12) (1984)

    Google Scholar 

  37. Weiland, C.: Computational Space Flight Mechanics. Springer, Berlin (2010)

    Book  Google Scholar 

  38. Weiland, C.: Aerodynamic Data of Space Vehicles. Springer, Berlin (2014)

    Book  Google Scholar 

  39. Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin and AIAA (Progress in Astronautics and Aeronautics), Reston USA (2009)

    Google Scholar 

  40. Hagemann, G., Knab, O.: Private communications. EADS - Astrium Space Transportation (2010)

    Google Scholar 

  41. Abgrall, R., Désidéri, J.-A., Glowinski, R., Mallet, M., Périaux, J. (eds.): Hypersonic Flows for Reentry Problems, vol. III. Springer, Berlin (1992)

    Google Scholar 

  42. Wegener, P.P., Buzyna, G.: J. Fluid Mech. 37, 325–335 (1969)

    Article  ADS  Google Scholar 

  43. Schmidt, E. : Ernst Kraft Wilhem Nusselt (1882 bis 1957). Forschungen für die Wärmetechnik. In: Buchheim, G., Sonnemann, R., (eds.) Lebensbilder von Ingenieurwissenschaftlern. Leibzig (1989)

    Google Scholar 

  44. Nusselt, W.: Technische Thermodynamik. de Gruyter Verlag, Berlin (1934)

    MATH  Google Scholar 

  45. VDI Wärmeatlas: VDI Gesellschaft Verfahrenstechnik und Chemieingenieurswesen, (Eds.). Springer-Vieweg, Berlin (2013)

    Google Scholar 

  46. Désidéri, J.-A., Glowinski, R., Periaux, J. (eds.): Hypersonic Flows for Reentry Problems, vols. I and II. Springer, Berlin (1991)

    Google Scholar 

  47. Schroeder, W., Menne, S.: Hypersonic Delta-Wing Flow, Case VII.4. In: Abgrall, R., Désidéri, J.-A., Glowinski, R., Mallet, M., Périaux, J. (eds.) Hypersonic Flows for Reentry Problems, vol. III. Springer, Berlin (1992)

    Google Scholar 

  48. Delery, J., Coet, M.-C.: Experiments on Shock/Boundary-Layer Interactions Producd by Two-Dimensional Ramps and Three-Dimensional Obstacles. In: Désidéri, J.-A., Glowinski, R., Périaux, J. (eds.) Hypersonic Flows for Reentry Problems, vol. II. Springer, Berlin (1991)

    Google Scholar 

  49. Hottel, H.C.: Bibliographical memoirs of Warren Kendall Lewis. In: National Academy of Sciences, National Academic Press, Washington D.C., (1996)

    Google Scholar 

  50. Lewis, W.K.: J. Indust. Eng. Chem. 1, 522–533 (1909)

    Article  Google Scholar 

  51. Vad, J., Lajos, T., Schilling, R. (eds.): Modelling Fluid Flow. Springer, Berlin (2004)

    MATH  Google Scholar 

  52. Kurzweil, P.: Das Vieweg Einheiten Lexikon. Vieweg-Verlag, Braunschweig (1999)

    Book  Google Scholar 

  53. https://authors.libraray.caltech.edu/61287/3mmc2.pdf

  54. http://www.thermopedia.com/content/1109

  55. https://tu-dresden.de/ing/maschinenwesen/ilr/ressourcen/dateien/tfd/studium/dateien/Thermofluiddynamik_F.pdf?lang=de

  56. Schütz, Th. (ed.): Hucho - Aerodynamic des Automobils. Springer-Vieweg, Braunschweig (2013)

    Google Scholar 

  57. Hitzel, S.: Private communication. EADS Military Aircraft Systems, Ottobrunn (2002)

    Google Scholar 

  58. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. d. III. Intern. Math. Kongress, Heidelberg, Germany (1904). (B.G. Teubner Verlag, Leibzig, 485–491 (1905))

    Google Scholar 

  59. Meier, G.E.A. (ed.): Ludwig Prandtl, ein Führer in der Strömungslehre. Vieweg Verlag, Braunschweig (2000)

    Google Scholar 

  60. Rotta, J.C.: Die Aerodynamische Versuchsanstalt in Göttingen, ein Werk Ludwig Prandtls. Verlag Vandenhoeck & Ruprecht, Göttingen (1990)

    Google Scholar 

  61. Christen, D.S.: Praxiswissen der chemischen Verfahrenstechnik. Springer, Berlin (2010)

    Book  Google Scholar 

  62. Herwig, H.: Wärmeübertragung A-Z. VDI Buch. Springer, Berlin (2000)

    Book  Google Scholar 

  63. Schlichting, H., Gersten, K.: Grenzschichttheorie, 10th edn. Springer, Berlin (2006)

    Google Scholar 

  64. Jischa, M.: Konvektiver Impuls-, Wärme- und Stoffaustausch. Springer Fachwissen, Berlin (1982)

    Google Scholar 

  65. Herival, J.: Joseph Fourier: the man and the physicist. Clarendon Press, Oxford (1975)

    Google Scholar 

  66. Nowlan, R.: A chronicle of mathematical people. pdf - file

    Google Scholar 

  67. Fourier, J.-B.-J.: Théorie analytique de la chaleur. Firmin Didot et Fils (1822)

    Google Scholar 

  68. Struik, D.J.: Joseph Fourier, French Mathematician. Encyclopeadia Britannica

    Google Scholar 

  69. Böckh v., P.: Wärmeübertragung Grundlagen und Praxis. Springer, Berlin (2006)

    Google Scholar 

  70. N.N.: Unsteady State Heat Transfer. http://www3.nd.edu/~amoukasi/CBE358_Lab1/HT3_Unsteady%20State%20Heat%20Transfer_f.pptx

  71. Kassab, A.: Application of Series in Heat Transfer - transient heat conduction (2008). https://excel.ucf.edu/classes/2008/Spring/appsII/chapter_7b_Sp_08.pdf

  72. Strouhal, V.: Über eine besondere Art der Tonerregung. Annalen der Physik und Chemie, vol. 5, Leipzig, Germany. 216–251 (1878)

    Google Scholar 

  73. Költzsch, P.: Fragmente aus der Geschichte der Strömungsakustik. University of Dresden, Germany. https://pub.dega-akustik.de/DAGA_1999-2008/data/articles/00121.pdf

  74. Corda, S.: Introduction to Aerospace Engineering with Flight Test Perspective. Wiley, New York (2017)

    Google Scholar 

  75. Würz, W., Gaisbauer, U.: Strouhal Zahl, University of Stuttgart, (2014). https://www.iag-stuttgart.de/abteilungen/laminarwindkanal/pdf_laminar/Umdrucke_Messtechnik/06_Aehnlichkeitszahlen_Messtechnik_WS2014.pdf

  76. Billah, K.Y., Scanlan, R.H.: Resonance, Tacoma narrows bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59 (1991)

    Google Scholar 

  77. https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)

  78. Nobel Lectures, Physics 1901–1921. Elsevier Publishing Company, Amsterdam (1967). https://www.nobelprize.org/nobel_prizes/physics/laureates/1904/

  79. O’Connor, J.J., Robertson, E.F.: John William Strutt (Lord Rayleigh). http://www-groups.dcs.st-and.ac.uk/history/Printonly/Rayleigh.html

  80. Lindsay, R.B.: John William Strutt, 3rd Lord Rayleigh. https://www.britannica.com/print/article/492464

  81. Görtler, H.: Dimensionsanalyse. Theorie der physikalischen Dimensionen und Anwendungen. Springer, Berlin (1975)

    Book  Google Scholar 

  82. Ahlers, G., Grossmann, S., Lohse, D.: Hochpräzision im Kochtopf. Phys. J., vol. 2, Wiley-VCH Verlag (2002)

    Google Scholar 

  83. Bénard, H.: Les tourbillions cellulaires dans une nappe liquide. Revue Générale des Science, vol. 11, 1261–1271 and 1309–1328 (1900)

    Google Scholar 

  84. Strutt, J.W.: On the convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 2, 833–844 (1916)

    Google Scholar 

  85. Merker, G.P.: Konvektive Wärmeübertragung. Springer, Berlin (1987)

    Google Scholar 

  86. Voit, C.: Nekrolog auf Sir George Gabriel Stokes. Sitzungsberichte der mathematisch-physikalischen Klasse der K.B. Akademie der Wissenschaften, München, Band XXXIII (1903)

    Google Scholar 

  87. Mathematical and Physical Papers by George Gabriel Stokes. https://www.cambridge.org/core/books/mathematical-and-physical-papers/58B93740612EFCB1C365A1DCC3

  88. Krause, E.: Strömungslehre, Gasdynamik und aerodynamisches Laboratorium. Teubner Verlag, Stuttgart (2003)

    Google Scholar 

  89. Stokes, G.G.: Trans. Camb. Phil. Soc. 2 (Part II), 8–106 (1851)

    Google Scholar 

  90. https://www.math.nyu.edu/faculty/childres/chpseven.PDF

  91. Cromer, D., Pruisner, L.: Snow, Rain and the Stokes number. s3.danielcromer.com/resources/SnowRainStokesNo.pdf

    Google Scholar 

  92. http://www.diss.fu-berlin.de/diss/servlet/MCRFileNodeServlet/FUDISS_derivate_000000003104/02_Kap_p9-p52.pdf

  93. Dillmann, A.: Future Perspectives of Experimental Aerodynamics. DLR Göttingen. Paper presented at the celebration of E.H. Hirschel’s 80th birthday, DLR Cologne (2014)

    Google Scholar 

  94. Adam, H., Steckelmacher, W.: Vacuum Science and Technology, -Pioneers of the 20th Century-. Redhead, P.A. (ed.). AIP Press, Maryland (1994)

    Google Scholar 

  95. von Kármán, Th.: ZAMM 3, 395–396 (1923)

    Google Scholar 

  96. Hänel, D.: Molekulare Gasdynamik. Springer, Berlin (2004)

    MATH  Google Scholar 

  97. Stemmer, C.: Hyperschallströmungen. Vorlesung TU München, Germany. https://www.aer.mw.tum.de/fileadmin/tumwaer/www/pdf/lehre/hyperschallstroem/skript.pdf

  98. Frankovic, B., Pohl, G.: Peter Salcher and Ernst Mach. Proc. Int. Symp, Rijeka, Croatia (2004)

    Google Scholar 

  99. http://www.scientificlib.com/en/Physics/Biographies/ErnstMach.html

  100. Ackeret, J.: Habilitationsschrift, ETH Zürich (1928)

    Google Scholar 

  101. Mach, E., Salcher, P.: Photographische Fixierung der durch Projectile in der Luft eingeleiteten Vorgänge. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Part 2 95, 764–781 (1887)

    Google Scholar 

  102. Mach, E.: Über die Abbildung der von Projectilen mitgeführten Luftmasse durch Momentphotographie. Anzeiger der Kaiserlichen Akademie der Wissenschaften 23, 136 (1886)

    Google Scholar 

  103. Mach, E., Salcher, P.: Optische Untersuchung der Luftstrahlen. Sitzungsberichte der Akademie der Wissenschaften, XCVIII Band, Wien (1889)

    Google Scholar 

  104. Gross, A., Weiland, C.: Numerical Simulation of Separated Cold Gas Nozzle Flows. J. Propul. Power 20(3), 509–519 (2004)

    Google Scholar 

  105. O’Connor, J.J., Robertson, E.F.: Josef Stefan. http://www-history.mcs.st-andrews.ac.uk/Biographies/Stefan_Josef.html

  106. Jiji, L.M.: Heat Conduction. Springer, Berlin (2009)

    Book  Google Scholar 

  107. Liu, J: Stability of viscoplastic flow. https://www.whoi.edu/fileserver.do?id=283458&pt=10&p=17275

  108. Osswald, T.A.: Understanding Polymer Processing. Hanser Verlag, Munich (2011)

    Google Scholar 

  109. Baehr, H.D., Stephan, K.: Heat and Mass Transfer. Springer, Berlin (2006)

    Book  Google Scholar 

  110. Kunes, J.: Dimensionless Physical Quantities in Science and Engineering. Elsevier Publishing Company, London (2012)

    Google Scholar 

  111. Grachev, A.A., Andreas, E.L., Fairall, Ch.W., Guest, P.S., Persson, P.O.G.: The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. https://arvix.org/ftp/arvix/papers/1202/1202.5066.pdf

  112. Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number (1960). https://pdfs.semanticscholar.org/2b0e/17ef8b142cd1100ec608956c75aa5ce24c.pdf

  113. Rattner, A., Bohren, J.: Heat and Mass Correlations. https://www.stwing.upenn.edu/~salexa/Documents/Correlations.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Weiland .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiland, C. (2020). Dimensionless Numbers—Similarity Parameters: A Look at the Name Holders. In: Mechanics of Flow Similarities. Springer, Cham. https://doi.org/10.1007/978-3-030-42930-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42930-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42929-4

  • Online ISBN: 978-3-030-42930-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics