Advertisement

Solubility and Volatility of MoO3 in High-Temperature Aqueous Solutions

Chapter
  • 292 Downloads
Part of the Springer Mineralogy book series (MINERAL)

Abstract

The thermodynamic properties of the neutral molybdic acid H2MoO4 are evaluated at 273–623 K and the saturated water vapor pressure from our own solubility data at 563–623 K and literature results at lower temperatures. Combining the Gibbs energies of H2MoO4 in the state of the aqueous solution with those in the ideal gas state, we calculated Henry’s constants and the vapor–liquid distribution constants of H2MoO4 at 273–623 K, and with the use of the relevant asymptotic relations, extrapolated values of Henry’s constants, \(k_{\text{H}}\), and vapor–liquid distribution constants, \(K_{\text{D}}\), toward the critical point of pure water. Our results show that over the whole temperature range of the existence of the vapor–liquid equilibrium of water, the neutral molybdic acid H2MoO4 is somewhat less volatile compared with Si(OH)4, and the difference in volatility of these species decreases with the temperature.

Keywords

Molybdenum trioxide Molybdic acid Aqueous solubility Vapor–liquid distribution Henry’s constant Krichevskii parameter 

Notes

Acknowledgements

This research was partially supported by the Russian Foundation for Basic Research (Grant # 15-05-2255). The authors thank A. N. Nekrasov and T. N. Dokina (IEM RAS) for SEM and XRD measurements and Dr. V. K. Karandashev (IPTM RAS) for ICP-MS analyses.

References

  1. Abdulagatov IM, Azizov ND (2003) High-temperature and high pressure densities of aqueous NaClO4 solutions. High Temp High Press 35–36:477–498Google Scholar
  2. Akinfiev AN, Plyasunov AV (2013) Steam solubilities of solid MoO3, ZnO and Cu2O, calculated on a basis of a thermodynamic model. Fluid Phase Equilib 338:232–244CrossRefGoogle Scholar
  3. Alvarez J, Corti HR, Fernández-Prini R, Japas ML (1994) Distribution of solutes between coexisting steam and water. Geochim Cosmochim Acta 58(13):2789–2798CrossRefGoogle Scholar
  4. Archer DG (1992) Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl·2H2O(cr), and phase equilibria. J Phys Chem Ref Data 21(4):793–829Google Scholar
  5. Borg S, Liu W, Etschmann B, Tian Y, Brugger J (2012) An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar. Geochim Cosmochim Acta 92:292–307CrossRefGoogle Scholar
  6. Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate(VI). Adv Inorg Chem 49:127–182CrossRefGoogle Scholar
  7. Dadze TP, Kashirtseva GA (2004) Solubility and occurrence mode of gold in acid sulfide solutions. Dokl Earth Sci 395(2):235–237Google Scholar
  8. Dadze TP, Sorokin VI (1986) Solubility of SnO2 in water at 200–400°C and 1.6–150 MPa. Dokl Akad Nauk SSSR 286(2):426–428 (in Russian)Google Scholar
  9. Dadze TP, Sorokin VI, Nekrasov IYa (1981) Solubility of SnO2 in water and in aqueous solutions of HCl, HCl + KCl, and HNO3 at 200–400°C and 1013 bar. Geochem Int 18(5):142–152Google Scholar
  10. Dadze TP, Akhmedzhanova GM, Kashirtseva GA, Orlov PYu (1999) The Au solubility in H2S-bearing aqueous solutions at 300°C. Dokl Earth Sci 369A(9):1275–1276Google Scholar
  11. Dadze TP, Kashirtseva GA, Ryzhenko BN (2000) Gold solubility and species in aqueous sulfide solutions at T = 300°C. Geochem Int 38(7):708–712Google Scholar
  12. Dadze TP, Akhmedzhanova GM, Kashirtseva GA, Orlov PYu (2001) Solubility of gold in sulfide-containing aqueous solutions at T = 300°C. J Mol Liquids 91(1):99–102CrossRefGoogle Scholar
  13. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2017a) Solubility of MoO3 in acid solutions and vapor-liquid distribution of molybdic acid. Fluid Phase Equilib 440:64–76CrossRefGoogle Scholar
  14. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2017b) Solubility of MoO3 in NaClO4 solutions at 573 K. J Chem Eng Data 62(11):3848–3853CrossRefGoogle Scholar
  15. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2018a) Solubility of calcium molybdate in aqueous solutions at 573 K and thermodynamics of monomer hydrolysis of Mo(VI) at elevated temperatures. Monatsh Chem/Chem Month 149(2):261–282CrossRefGoogle Scholar
  16. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2018b) Solubility of MoO3 in aqueous acid chloride-bearing solutions at 573 K. J Chem Eng Data 63(5):1827–1832CrossRefGoogle Scholar
  17. Fernández-Prini R, Alvarez JL, Harvey AH (2003) Henry’s constants and vapor–liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J Phys Chem Ref Data 32(3):903–916CrossRefGoogle Scholar
  18. Gorbachev NS, Dadze TP, Kashirtseva GA, Kunts AF (2010) Fluid transfer of gold, palladium, and rare earth elements and genesis of ore occurrences in the Subpolar Urals. Geol Ore Deposit 52(3):215–233Google Scholar
  19. Henderson MP, Miasek VI, Swaddle TW (1971) Kinetics of thermal decomposition of aqueous perchloric acid. Can J Chem 49(2):317–324CrossRefGoogle Scholar
  20. Japas ML, Levelt Sengers JMH (1989) Gas solubility and Henry’s law near the solvent’s critical point. AIChE J 35(5):705–713CrossRefGoogle Scholar
  21. Khitarov NI, Arutyunyan LA, Malinin SD (1967) On the possibilities of molybdenum migration in the vapor phase above molybdate solutions at elevated temperatures. Geokhimiya 2:155–159 (in Russian)Google Scholar
  22. Kokh MA, Lopez M, Gisquet P, Lanzanova A, Candaudap F, Besson P, Pokrovski GS (2016) Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems. Geochim Cosmochim Acta 187:311–333CrossRefGoogle Scholar
  23. Kudrin AV (1985) The solubility of tugarinovite MoO2 in aqueous solutions at 300–450°C. Geochem Int 22(9):126–138Google Scholar
  24. Kudrin AV (1989) Behavior of Mo in aqueous NaCl and KCl solutions at 300–450°C. Geochem Int 26(8):87–99Google Scholar
  25. Levelt Sengers JMH (1991) Solubility near the solvent’s critical point. J Supercrit Fluids 4(4):215–222CrossRefGoogle Scholar
  26. Marchenko Z (1971) Photometric determination of elements. Mir, Moscow, 501 p (in Russian)Google Scholar
  27. Palmer DA, Simonson JM, Jensen JP (2004) Partitioning of electrolytes to steam and their solubilities in steam. In: Palmer DA, Fernàndez-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Elsevier, New York, pp 409–439CrossRefGoogle Scholar
  28. Plyasunov AV (2012) Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor–liquid distribution constants, fugacity and cross virial coefficients. Geochim Cosmochim Acta 77:215–231CrossRefGoogle Scholar
  29. Plyasunov AV, Grenthe I (1994) The temperature dependence of stability constant for the formation of polynuclear cationic complexes. Geochim Cosmochim Acta 58(17):3561–3582CrossRefGoogle Scholar
  30. Plyasunov AV, Ivanov IP (1991) The solubility of zinc oxide in sodium chloride solutions up to 600°C and 1000 bar. Geochem Int 28(6):77–90Google Scholar
  31. Plyasunov AV, Plyasunova NV (1993a) Study of solubility of zinc oxide in KOH solutions at 400–500°C and pressure 0.5–2.0 kbar. Dokl Akad Nauk SSSR 328(5):605–608 (in Russian)Google Scholar
  32. Plyasunov AV, Plyasunova NV (1993b) Study of solubility of zinc oxide in KOH + NaCl solutions at 400–500°C and pressure 0.5–2.0 kbar. Dokl Akad Nauk SSSR 329(2):228–231 (in Russian)Google Scholar
  33. Plyasunov AV, Belonozhko AB, Ivanov IP, Khodakovsky IL (1988) Solubility of zinc oxide in alkaline solutions at 200–350°C under saturated steam pressure. Geochem Int 25(10):77–85Google Scholar
  34. Rempel KU, Williams-Jones AE, Migdisov AA (2009) The partitioning of molybdenum(VI) between aqueous liquid and vapour at temperatures up to 370°C. Geochim Cosmochim Acta 73(11):3381–3392CrossRefGoogle Scholar
  35. Shvarov YuV (2015) A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements. Appl Geochem 55:17–27CrossRefGoogle Scholar
  36. Sorokin VI, Dadze TP (1980) Solubility of amorphous SiO2 in water and in aqueous solutions of HCl and HNO3 at temperatures 100–400°C and pressure of 101.3 MPa. Dokl Akad Nauk SSSR 254(3):735–739 (in Russian)Google Scholar
  37. Wagner W, Pruß A (2002) The IAPWS formulation for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535CrossRefGoogle Scholar
  38. Zakirov IV, Dadze TP, Sretenskaya NG, Kashirtseva GA (2008) Experimental data on gold solubility in low-density hydrothermal fluids. Dokl Earth Sci 423(2):1492–1494Google Scholar
  39. Zakirov IV, Dadze TP, Sretenskaya NG, Kashirtseva GA, Volchenkova VL (2009) Gold solubility in low-density fluids in the Au–H2O–H2S–Cl system: experimental data. Geochem Int 47(3):311–314Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.D.S. Korzhinskii Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations