Skip to main content

Experimental and Theoretical Studies of the Viscosity of the Fluid Magmatic Systems in Conjunction with the Structure of Melts at the Thermodynamic Parameters of the Earth’s Crust and Upper Mantle

  • Chapter
  • First Online:
  • 301 Accesses

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

Paper provides a brief overview of the results of the established general regularities of the concentration, temperature, pressures and phase dependency of viscosity of the fluid-magmatic systems in connection with the anniversary of IEM RAS (50 years have passed since the establishment of this unique Institution). The study of the viscosity of such melts was carried out in the full range of compositions of natural magmas (acid-ultrabasic) in a wide range of fluid compositions (Ar, H2O, H2O + HCl, H2O + NaCl, H2O + HF, CO2, H2O + CO2, H2), and thermodynamic parameters of the earth’s crust and upper mantle (T = 800°–1950 °C, P = 100 MPa–12.0 GPa, Pfl= 10–500 MPa). The study of the viscosity of such melts was carried out in the IEM RAS in conjunction with the study of structural features of melts. The features of the unique equipment and techniques developed in the IEM RAS for such original studies are briefly considered. The possibilities and advantages of the developed structural-chemical model of reliable predictions and calculations of viscosity of fluid-magmatic systems in the full range of magma compositions from acidic to ultramafic at thermodynamic parameters of the earth’s crust and upper mantle are discussed. Some examples of successful application of the obtained experimental and theoretical results to natural processes are briefly considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:39–146

    Google Scholar 

  • Allwardt JR, Stebbins JF, Terasaki H, Du LS, Frost DJ, Withers AC, Hirschmann MM, Suzuki A, Ohtani E (2007) Effect of structural transitions on properties of high-pressure silicate melts: Al-27 NMR, glass densities, and melts viscosities. Am Mineral 92:1093–1104

    Article  Google Scholar 

  • Behrens H, Schulze F (2003) Pressure dependence of melt viscosity in the system NaAlSi3O8-CaAlSi2O6. Amer Min 88:1351–1363

    Article  Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–475

    Article  Google Scholar 

  • Brearley M, Dickinson JE Jr, Scarfe M (1986) Pressure dependence of melt viscosities on the join diopside-albite. Geochim Cosmochim Acta 30:2563–2570

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2009) Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Litos 112(1):249–259

    Google Scholar 

  • Brush SG (1962) Theories of liquid viscosity. Chemic Rev 62:513–548

    Article  Google Scholar 

  • Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (Abstract). Geol Soc Am Special Paper 76:26

    Google Scholar 

  • Carron JP (1969) Vue d’ensemble sur la rheology des magmas silicates naturels. Bull Soc Franc Min Crestallogr 92:435–446

    Google Scholar 

  • Champallier R, Bystricky M, Arbaret L (2008) Experimental investigation of magma rheology at 300 MPa: from pure hydrous melt to 75 vol. % of crystals. Earth Planet Sci Lett 267:571–583

    Article  Google Scholar 

  • Chepurov AI, Pokhilenko NP (2015) Experimental estimation of the kimberlite melt viscosity. Dokl Earth Sci 462(2):592–595

    Article  Google Scholar 

  • Chepurov AI, Zhimulev EI, Agavonov IV et al (2013) The stability of ortho-and clinopyroxenes, olivine, and garnet in kimberlitic magma. Russ Geol Geoph 54(14):533–544

    Google Scholar 

  • Dalton JA, Presnall DC (1998) The continuum of primary carbonatite-kimberlitic melt compositions in equilibrium with lherzolite data from the system CaO-MgO-Al2O3- SiO2-CO2 at 6 GPa. J Petrol 39(11–12):1953–1964

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662

    Article  Google Scholar 

  • Dingwell DB (2006) Transport properties of magmas: diffusion and rheology. Elements 2:281–286

    Article  Google Scholar 

  • Dingwell DB, Romano C, Hess KU (1996) The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant volcanism. Contrib Min Petrol 124:19–28

    Article  Google Scholar 

  • Dingwell DB, Copurtial P, Giordano D, Nichols ARL (2004) Viscosity of peridotite liquid. Earth Planet Sci Lett 226:127–138

    Article  Google Scholar 

  • Dobson DF, Jones AP, Rabe R, Sekine T, Kurita K et al (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Frenkel Y (1975) The kinetic theory of liquids. USSR Academy Press, Moscow, 415 p. (in Russian)

    Google Scholar 

  • Fujii T, Kushiro I (1977) Density, viscosity, and compressibility of basaltic liquid at high pressures. Carneqie Inst Year Book 76:419–424

    Google Scholar 

  • Giordano D, Dingwell DB (2003) Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet Sci Lett 208:337–349

    Article  Google Scholar 

  • Giordano D, Romano C, Papale P, Dingwell DB (2004) The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem Geol 213(1–3):49–61

    Article  Google Scholar 

  • Giordano D, Russel JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Hess KU, Dingwell D (1996) Viscosities of hydrous leucogranitic melts: a non-arrhenian model. Amer Miner 81:1297–1300

    Google Scholar 

  • Hess KU, Dingwell DB, Webb SL (1995) The influence of excess alkalis on the viscosity of a haplogranitic melt. Amer Mineral 80:297–304

    Article  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–406

    Article  Google Scholar 

  • Ivanov OK, Stiegelmeier SV (1982) The viscosity and temperature of crystallization of melts of ultramafic rocks. Geochimiya 3:330–337 (in Russian)

    Google Scholar 

  • Karki BB, Stixrude L (2010) Viscosity of MgSiO3 liquid at mantle conditions: implications for early magma ocean. Science 96:740–742

    Article  Google Scholar 

  • Kavanagh JL, Sparks RSJ (2009) Temperature changes in ascending kimberlite magma. Earth Planet Sci Lett 286:404–413

    Article  Google Scholar 

  • Kono Y, Park C, Kenney-Benson C, Shen G, Wang Y (2014) Toward studies of liquids at 605 high pressures and high temperatures: combined structure, elastic wave velocity, and viscosity 606 measurements in the Paris-Edinburgh cell. Phys Earth Inter 228:269–280

    Article  Google Scholar 

  • Kushiro I (1980) Viscosity, density and structure of silicate melts at high pressures, and their petrological applications. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, New Jersey, pp 93–120

    Chapter  Google Scholar 

  • Lange RA (1994) The effect of H2O, CO2, and F on the density and viscosity of silicate melts. In: Carrol MR, Holloway JR (eds) Reviews in mineralogy. Volatiles in magmas MSA, Washington, vol 30, pp 331–369

    Google Scholar 

  • Lebedev EB, Khitarov NI (1979) Physical properties of magmatic melts. Nauka, Moscow, 200 p. (in Russian)

    Google Scholar 

  • Liebske C, Schmickler B, Terasaki H, Poe BT, Suzuki A, Funakoshi KI, Ando R, Rubie DC (2005) The viscosity of peridotite liquid at pressures up to 13 GPa. Earth Planet Sci Lett 240:589–604

    Article  Google Scholar 

  • Litvin YA (1991) Physical and chemical studies of deep melting of the Earth. Nauka, Moscow, 314 p. (in Russian)

    Google Scholar 

  • McMillan PF, Wilding MC (2009) High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids. J. Non Crystall Solids 355:722–732

    Article  Google Scholar 

  • Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcanol Geochem Res 174(1–3):1–8

    Google Scholar 

  • Mysen BO (1991) Relation between structure, redox equilibria of iron, and properties of magmatic liquids. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas, vol 9. Adv Phys Geochem. Springer, New York, pp 41–98

    Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1979) Viscosity of silicate melts as a function of pressure: structural interpretation. Carnegie Inst Washington Yearb 78:551–556

    Google Scholar 

  • Neuville DR, Richet P (1991) Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim Cosmochim Acta 55(4):1011–1019

    Article  Google Scholar 

  • Neuville DR, Courtial P, Dingwell DB, Richet P (1993) Thermodynamic and rheological properties of rhyolite and andesite melts. Contrib Min Petrol 113:572–581

    Article  Google Scholar 

  • Ohtani E, Suzuki A, Audo A, Funakoshi A, Katayama Y (2005) Viscosity and density measurements of melts and glasses at high pressure and temperature by using the multi-anvil apparatus and synchrotron X-ray radiation. In: Wang J et al (eds) Advances in high-pressure technology for geophysical application. Elsevier, Amsterdam, pp 195–210

    Chapter  Google Scholar 

  • Pal R (2003) Rheological behavior of bubble-bearing magmas. Earth Planet Sci Lett 207:165–179

    Article  Google Scholar 

  • Persikov ES (1984) Viscosity of magmatic melts. Nauka, Moscow, 160 p. (in Russian)

    Google Scholar 

  • Persikov ES (1991) The viscosity of magmatic liquids: experiment, generalized patterns; a model for calculation and prediction; application. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas, vol 9. Adv Phys Geochem. Springer, New York, pp 1–40

    Google Scholar 

  • Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and temperatures of the Earth’s crust and upper mantle. Russ Geol Geophys 39(12):1780–1792

    Google Scholar 

  • Persikov ES, Bukhtiyarov PG (2002) Unique high gas pressure apparatus to study fluid—melts and fluid—solid—melts interaction with any fluid composition at the temperature up to 1400 °C and at the pressures up to 5 kbars. J Conf Abs 7(1):85

    Google Scholar 

  • Persikov ES, Bukhtiyarov PG (2004) Experimental study of the effect of lithostatic and aqueous pressures on viscosity of silicate and magmatic melts. In: Zharikov VA, Fedkin VV (eds) A new structural-chemical model to calculate and predict the viscosity of such melts. Experimental mineralogy. Some results on 540 the Century’s frontier. Nauka, Moscow, issues 1, pp 103–122. (in Russian)

    Google Scholar 

  • Persikov ES, Bukhtiyarov PG (2009) Interrelated structural chemical model to predict and calculate viscosity of magmatic melts and water diffusion in a wide range of compositions and T-P parameters of the Earth’s crust and upper mantle. Russ Geol Geophys 50(12):1079–1090

    Article  Google Scholar 

  • Persikov ES, Kushiro I, Fujii T, Bukhtiyarov PG, Kurita K (1989) Anomalous pressure effect on viscosity of magmatic melts. In: DELP international symposium phase transformation at high pressures and high temperatures: applications to geophysical and petrological problems. Misasa, Tottori-ken, Japan, pp 28–30

    Google Scholar 

  • Persikov ES, Zharikov VA, Bukhtiyarov PG, Pol’skoy SF (1990) The effect of volatiles on the properties of magmatic melts. Eur J Min (2):621–642

    Google Scholar 

  • Persikov ES, Newman S, Bukhtiyarov PG, Nekrasov AN, Stolper EM (2010) Experimental study of water diffusion in haplobasaltic and haploandesitic melts. Chem Geol (276):241–256

    Google Scholar 

  • Persikov ES, Bukhtiyarov PG, Sokol AG (2015) Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution (prediction). Russ Geol Geophys 56:883–892

    Article  Google Scholar 

  • Persikov ES, Bukhtiyarov PG, Sokol AG (2017) Viscosity of hydrous kimberlite and basaltic melts at high pressures. Russ Geol Geophys 58:1093–1100

    Article  Google Scholar 

  • Persikov ES, Bukhtiyarov PG, Sokol AG (2018a) Viscosity of haplokimberlite and basaltic melts at high pressures. Chem Geol 497:54–63

    Article  Google Scholar 

  • Persikov ES, Bukhtiyarov PG, Sokol AG (2018b) Viscosity of depolymerized dunite melts under medium and high pressures. Geochem Int 56(12):1148–1155

    Article  Google Scholar 

  • Poe BT, Romano C, Liebske C, Rubie D, Terasaki H, Suzuki A, Funakoshi K (2006) High-temperature viscosity measurements of hydrous albite liquid using in-situ falling-sphere viscometry at 2.5 GPa. Chem Geol 229:2–9

    Article  Google Scholar 

  • Reid JE, Suzuki A, Funakoshi KI, Terasaki H, Poe BT, Rubie DC, Ohtani E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa. Phys Earth Planet Int 139:45–54

    Article  Google Scholar 

  • Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483

    Article  Google Scholar 

  • Richet P, Lejeune AM, Holt F, Roux J (1996) Water and the viscosity of andesite melts. Chem Geol 128:185–197

    Article  Google Scholar 

  • Romano C, Giordano D, Papale P, Mincione V, Dingwell DB, Rosi M (2003) The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Field. Chem Geol 202:23–38

    Article  Google Scholar 

  • Russell JK, Giordano D, Dingwell DB, Hess KU (2002) Modelling the non-Arrhenian rheology of silicate melts: numerical consideration. Eur J Miner 14:417–427

    Article  Google Scholar 

  • Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation- fuelled buoyancy. Nature 481:352–357

    Article  Google Scholar 

  • Scarfe GM (1986) Viscosity and density of silicate melts. In: Scarfe GM (ed) Silicate melts mineral association of Canada short course handbook, vol 12. Canada, pp 36–56

    Google Scholar 

  • Scarfe CM, Mysen BO, Virgo D (1987) Pressure dependence of the viscosity of silicate melts. In: Mysen B (ed) Magmatic processes: physico-chemical principles. Cheochem Soc Spec Publ 1:59–68

    Google Scholar 

  • Schulze F, Behrens H, Holtz F, Roux J, Johannes W (1996) The influence of H2O on the viscosity of a haplogranitic melt. Amer Min 81:1155–1165

    Article  Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Amer J Sci 272(11):870–893

    Article  Google Scholar 

  • Shaw HR, Wright TL, Peck DL, Okamura R (1968) The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. Amer J Sci 266:225–264

    Article  Google Scholar 

  • Sheludyakov LN (1980) Composition, structure and viscosity of silicate and aluminosilicate melts. Science, Alma-ATA, 157 p. (in Russian)

    Google Scholar 

  • Sokol AG, Palyanov YN (2008) Diamond formation in the system MgO-SiO2-H2O-C at 7.5 GPa and 1600 °C. Contrib Min Petrol 121:33–43

    Google Scholar 

  • Sparks RSJ, Brooker RA, Field M, Kavanagh J, Schumacher JC, Walter MJ, White J (2009) The nature of erupting kimberlite melts. Lithos 112(S):429–438

    Google Scholar 

  • Stolper EM (1982) Water in silicate glasses: an infrared spectroscopic study Contr Miner Petrol (81):1–17

    Google Scholar 

  • Suzuki Akio, Ohtani Eiji, Terasaki Hidenori, Funakoshi Kenichi (2005) Viscosity of silicate melts in CaMgSi2O6-NaALSi2O6 system at high pressure. Phys Chem Min 32:140–145

    Article  Google Scholar 

  • Uhira K (1980) Experimental study on the effect of bubble concentration on the effective 706 viscosity of liquids. Bull Earth Res Inst 56:857–871

    Google Scholar 

  • Vetere F, Behrens H, Holtz F, Vilardo G, Ventura G (2010) Viscosity of crystal-bearing melts and its implication for magma ascent. J Miner Petrol Sci 105:151–163

    Article  Google Scholar 

  • Volarovich MP (1940) Investigation of the viscosity of molten rocks. Zap All-Russ Min Soc 69(2–3):310–313 (in Russian)

    Google Scholar 

  • Waff HS (1975) Pressure-induced coordination changes in magmatic liquids. Geophys Res Lett 2:193–196

    Article  Google Scholar 

  • Whittington A, Richet P, Holtz F (2000) Water and the viscosity of depolymerized aluminosilicate melts. Geochim Cosmochim Acta 64:3725–3736

    Article  Google Scholar 

  • Whittington A, Richet P, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. Chem Geol 174:209–223

    Article  Google Scholar 

  • Wolf GH, McMillan PF (1995) Pressure effects on silicate melt structure and properties. In: Stebbins JF et al (eds) Reviews in mineralogy. Structure, dynamics and properties of silicate melts, vol 32. MSA, Washington, pp 505–561

    Google Scholar 

  • Wyllie PJ (1980) The origin of kimberlite. J Geophys Res 85:6902–6910

    Article  Google Scholar 

  • Yoder HS (1976) Generation of basaltic magmas. National Academy of Sciences, Washington D.C., 265 p

    Google Scholar 

Download references

Acknowledgements

The work was carried out under the theme NIR AAAA-A18-118020590141-4 of the IEM RAS and was supported by the program № 8 of the Presidium of RAS. We thank A. N. Nekrasov (IEM RAS) for his generous help during electron microprobe analysis of samples, G. V. Bondarenko (IEM RAS) and S. Newman (Caltech, USA) for their help during FTIR and Raman spectroscopy study of samples. We thank A. G. Sokol from IGM SB RAS for his help during experimental study of the viscosity of kimberlite and basalt melts at high pressures. We are grateful to D. M. Sultanov from IEM RAS for his help in the preparation of high quality drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Persikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Persikov, E.S., Bukhtiyarov, P.G. (2020). Experimental and Theoretical Studies of the Viscosity of the Fluid Magmatic Systems in Conjunction with the Structure of Melts at the Thermodynamic Parameters of the Earth’s Crust and Upper Mantle. In: Litvin, Y., Safonov, O. (eds) Advances in Experimental and Genetic Mineralogy. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-42859-4_4

Download citation

Publish with us

Policies and ethics