Skip to main content

Domain Knowledge Representation Languages and Methods for Building Regulations

  • Conference paper
  • First Online:
Advances in Building Information Modeling (EBF 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1188))

Included in the following conference series:

Abstract

The development of computable building regulations is an important factor for shortening the communication of building code provisions and automated code compliance checking. The representation of building regulations plays an important role in a computer-readable format which recognizes and understands certain aspects of the domain knowledge in compliance checking of building regulations. It allows compliance checking of a building model according to building regulations, codes and standards, and it evaluates the building model with its building elements. The studies have continued to the present to obtain data from legal sources and to create an appropriate computable representation of building regulations. In this research, the studies on domain knowledge representation of computable building regulation compliance checking are reviewed in detail based on the literature in the last 50 years. It also discusses the languages and methods of the studies under common titles such as Human Languages, Formal Languages, Artificial Intelligence Methods, Markup Language Methods and Semantic Web Methods and also reviews the languages and methods which are used in the representation of building regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenves, S., Goel, S., Gaylord, E.: Decision Table Formulation of the 1969 AISC Specifcation. University of Illinois, Urbana (1969)

    Google Scholar 

  2. Fenves, S.J., Garrett, J.H., Kiliccote, H., Law, K.H., Reed, K.A.: Computer representations of design standards and building codes: U.S. perspective. Int. J. Constr. Inf. Technol. 3(1), 13–34 (1995)

    Google Scholar 

  3. Eastman, C., Lee, J., Jeong, Y., Lee, J.-K.: Automatic rule-based checking of building designs. Autom. Constr. 18(8), 1011–1033 (2009)

    Article  Google Scholar 

  4. Frye, M., Olynick, D., Pinkney, R.: Development of an expert system for the freprotection requirements of the national building code of Canada. In: Proceedings of CIB W78 Conference, Montreal, Canada, pp. 215–226 (1992)

    Google Scholar 

  5. Mugridge, W., Hosking, J., Amor, R.: Adding a Code Conformance Tool to an Integrated Building Design Environment. Auckland Uniservices, Auckland (1996)

    Google Scholar 

  6. Rosenman, M.A., Gero, J.S., Oxman, J.: An expert system for design codes and design rules. In: Sriram, D., Adey, R. (eds.) Applications of Artificial Intelligence in Engineering Problems, vol. II, pp. 745–758. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-662-21626-2_60

    Chapter  Google Scholar 

  7. Hjelseth, E., Nisbet, N.: Overview of concepts for model checking. In: 27th International Conference–Applications of IT in the AEC Industry, CIB W78 2010, Cairo, pp. 16–18 (2010)

    Google Scholar 

  8. Kiyavitskaya, N., Zeni, N., Mich, L., Cordy, J.R., Mylopoulos, J.: Text mining through semi automatic semantic annotation. In: Reimer, U., Karagiannis, D. (eds.) PAKM 2006. LNCS (LNAI), vol. 4333, pp. 143–154. Springer, Heidelberg (2006). https://doi.org/10.1007/11944935_13

    Chapter  Google Scholar 

  9. Zhang, J., El-Gohary, N.: Automated information extraction from construction related regulatory documents for automated compliance checking. In: Proceedings of the 28th International Conference of CIB W78, Sophia Antipolis, France, pp. 1–10 (2011)

    Google Scholar 

  10. Zhang, J., El-Gohary, N.: Extraction of construction regulatory requirements from textual documents using natural language processing techniques. In: Issa, R., Flood, I. (eds.) International Conference on Computing in Civil Engineering, pp. 453–460. ASCE American Society of Civil Engineers (2012)

    Google Scholar 

  11. Turk, Z., Vanier, D.: Tools and models for the electronic delivery of building codes and standards. In: Proceedings of CIB W78 Conference, Stanford, CA, pp. 20–30 (1995)

    Google Scholar 

  12. Vanier, D.: Computerized building regulations. In: Proceedings of the International Conference on Municipal Code Administration Building Safety and the Computer, pp. 43–62. National Research Council Canada, Winnipeg (1989)

    Google Scholar 

  13. Bolioli, A., Dini, L., Mercatali, P., Romano, F.: For the automated mark-up of Italian legislative texts in XML. In: Bench-Capon, T.J.M., Daskalopulu, A., Winkels, R. (eds.) Legal Knowledge and Information Systems: Jurix 2002: The Fifteenth Annual Conference, pp. 21–30. IOS Press, Amsterdam (2002)

    Google Scholar 

  14. Lau, G., Law, K.: An information infrastructure for comparing accessibility regulations and related information from multiple sources. In: The Proceedings of 10th International Conference on Computing in Civil and Building Engineering, Weimar, Germany, p. 11 (2004)

    Google Scholar 

  15. Hjelseth, E., Nisbet, N.: Capturing normative constraints by use of the semantic mark-up (RASE) methodology. In: Proceedings of CIB W78-W102 International Conference, Sophia Antipolis, France, pp. 1–10 (2011)

    Google Scholar 

  16. Nawari, N.O., Alsaffar, A.: Methods for computable building codes. J. Civil Eng. Archit. 3, 163–171 (2015)

    Article  Google Scholar 

  17. Construction Specifications Institute: The CSI Project Delivery Practice Guide, Chapter 4, Codes, Regulations, and Standards, pp. 51–63. Wiley, Hoboken (2011)

    Google Scholar 

  18. Sowa, J.F.: The challenge of knowledge soup. In: Ramadas, J., Chunawala, S. (eds.) Research Trends in Science, Technology and Mathematics Education. Homi Bhabha Centre, Mumbai (2006)

    Google Scholar 

  19. Crowston, K., Liu, X., Allen, E., Heckman, R.: Machine learning and rule based automated coding of qualitative data. In: Proceedings of 73rd ASIS&T Annual Meeting: Navigating Streams in an Information Ecosystem, pp. 1–2. Association for Information Science and Technology, Silver Spring (2010)

    Google Scholar 

  20. Zouaq, A.: An overview of shallow and deep natural language processing for ontology learning. In: Ontology Learning and Knowledge Discovery Using the Web: Challenges and Recent Advances, pp. 16–38. IGI Global, Hershey (2011)

    Chapter  Google Scholar 

  21. Tierney, P.J.: A qualitative analysis framework using natural language processing and graph theory. Int. Rev. Res. Open Distance Learn. 13(5), 173–189 (2012)

    Article  Google Scholar 

  22. Caldas, C.H., Soibelman, L.: Automating hierarchical document classification for construction management information systems. Autom. Constr. 12, 395–406 (2003)

    Article  Google Scholar 

  23. Zhang, J., El-Gohary, N.: Automated regulatory information extraction from building codes leveraging syntactic and semantic information. In: Proceedings of 2012 ASCE Construction Research Congress (CRC), West Lafayette, IN (2012)

    Google Scholar 

  24. Zhang, J., El-Gohary, N.M.: Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking. J. Comput. Civil Eng. 30, 04015014 (2013)

    Article  Google Scholar 

  25. Zhang, J., El-Gohary, N.: Automated information transformation for automated regulatory compliance checking in construction. J. Comput. Civil Eng. 29, B4015001 (2015)

    Google Scholar 

  26. Lau, G.T., Law, K.: An information infrastructure for comparing accessibility regulations and related information from multiple sources. In: Proceedings of 10th International Conference on Computing in Civil and Building Engineering, Weimar, Germany (2004)

    Google Scholar 

  27. Lupo, C., et al.: General XML format(s) for legal sources: Estrella European Project IST-2004-027655. Deliverable 3.1, Faculty of Law. University of Amsterdam, the Netherlands (2007)

    Google Scholar 

  28. Boer, A., Radboud, W., Vitali, F.: MetaLex XML and the legal knowledge interchange format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 21–41. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85569-9_2

  29. Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M.: Legislative XML on Semantic Web. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-1887-6

    Book  Google Scholar 

  30. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML: XML-based rules and norms. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML 2011. LNCS, vol. 7018, pp. 289–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24908-2_30

    Chapter  Google Scholar 

  31. Mazzei, A., Radicioni, D.P., Brighi, R.: NLP-Based Extraction of Modifcatory Provisions Semantics, pp. 50–57. ACM Press, New York (2009)

    Google Scholar 

  32. Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D.: Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0

    Book  Google Scholar 

  33. Palmirani, M., Brighi, R.: Model regularity of legal language in active modifcations. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.) AICOL 2009. LNCS, vol. 6237, pp. 54–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16524-5_5

    Chapter  Google Scholar 

  34. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: a markup language for semantic web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proceedings of SWWS 2001, the First Semantic Web Working Symposium, pp. 381–401 (2001)

    Google Scholar 

  35. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML: towards a general web rule language framework. In: Proceedings of Web Intelligence 2004, pp. 628–631. IEEE Computer Society (2004)

    Google Scholar 

  36. RuleML. The Rule Markup Initiative. http://www.ruleml.org. Accessed 01 Apr 2018

  37. Cardoso, J.: Semantic Web Services: Theory, Tools and Applications. IGI Global, Hershey (2007)

    Book  Google Scholar 

  38. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34 (2001)

    Article  Google Scholar 

  39. Pauwels, P., et al.: A semantic rule checking environment for building performance checking. Autom. Constr. 20(5), 506–518 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Aydın .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aydın, M., Yaman, H. (2020). Domain Knowledge Representation Languages and Methods for Building Regulations. In: Ofluoglu, S., Ozener, O., Isikdag, U. (eds) Advances in Building Information Modeling. EBF 2019. Communications in Computer and Information Science, vol 1188. Springer, Cham. https://doi.org/10.1007/978-3-030-42852-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42852-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42851-8

  • Online ISBN: 978-3-030-42852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics