Skip to main content

Context-Aware Collaborative Ranking

  • Conference paper
  • First Online:
  • 387 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12004))

Abstract

Recommender systems (RS) are being used in a broad range of applications, from online shopping websites to music streaming platforms, which aim to provide users high-quality personalized services. Collaborative filtering (CF) is a promising technique to ensure the accuracy of a recommender system, which can be divided into specific tasks such as rating prediction and item ranking. However, there is a larger volume of published works studying the problem of rating prediction, rather than item ranking though it is recognized to be more appropriate for the final recommendation in a real application. On the other hand, many studies on item ranking devoted to leveraging implicit feedback are limited in performance improvements due to the uniformity of implicit feedback. Hence, in this paper, we focus on item ranking with informative explicit feedback, which is also called collaborative ranking. In particular, we propose a novel recommendation model termed context-aware collaborative ranking (CCR), which adopts a logistic loss function to measure the predicted error of ranking and exploits the inherent preference context derived from the explicit feedback. Moreover, we design an elegant strategy to distinguish between positive and negative samples used in the process of model training. Empirical studies on four real-world datasets clearly demonstrate that our CCR outperforms the state-of-the-art methods in terms of various ranking-oriented evaluation metrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://csse.szu.edu.cn/staff/panwk/publications/CCR/.

References

  1. Balakrishnan, S., Chopra, S.: Collaborative ranking. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, pp. 143–152 (2012)

    Google Scholar 

  2. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  3. Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 4(1), 1:1–1:24 (2010)

    Article  Google Scholar 

  4. Li, G., Chen, Q.: Exploiting explicit and implicit feedback for personalized ranking. Math. Prob. Eng. 2016 (2016)

    Google Scholar 

  5. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  6. Liu, N.N., Yang, Q.: EigenRank: a ranking-oriented approach to collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 83–90 (2008)

    Google Scholar 

  7. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, pp. 1257–1264 (2007)

    Google Scholar 

  8. Niu, S., Guo, J., Lan, Y., Cheng, X.: Top-k learning to rank: labeling, ranking and evaluation. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 751–760 (2012)

    Google Scholar 

  9. Ouyang, Y., Liu, W., Rong, W., Xiong, Z.: Autoencoder-based collaborative filtering. In: Proceedings of the 21st International Conference on Neural Information Processing, pp. 284–291 (2014)

    Chapter  Google Scholar 

  10. Pan, W., Ming, Z.: Collaborative recommendation with multiclass preference context. IEEE Intell. Syst. 32(2), 45–51 (2017)

    Article  Google Scholar 

  11. Pan, W., Yang, Q., Duan, Y., Tan, B., Ming, Z.: Transfer learning for behavior ranking. ACM Trans. Intell. Syst. Technol. 8(5), 65:1–65:23 (2017)

    Article  Google Scholar 

  12. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  13. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)

    Google Scholar 

  14. Shi, Y., Larson, M., Hanjalic, A.: Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation. Inf. Sci. 229, 29–39 (2013)

    Article  Google Scholar 

  15. Wang, S., Sun, J., Gao, B.J., Ma, J.: VSRank: a novel framework for ranking-based collaborative filtering. ACM Trans. Intell. Syst. Technol. 5(3), 51:1–51:24 (2014)

    Article  Google Scholar 

  16. Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.J.: COFI RANK - maximum margin matrix factorization for collaborative ranking. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, pp. 1593–1600 (2007)

    Google Scholar 

  17. Wu, L., Hsieh, C., Sharpnack, J.: SQL-rank: a listwise approach to collaborative ranking. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5311–5320 (2018)

    Google Scholar 

  18. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the 9th ACM International Conference on Web Search and Data Mining, pp. 153–162 (2016)

    Google Scholar 

  19. Xue, H.J., Dai, X.Y., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3203–3209 (2017)

    Google Scholar 

  20. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1–12:19 (2019)

    Article  Google Scholar 

  21. Zhang, Z., Liu, Y., Zhang, Z., Shen, B.: Fused matrix factorization with multi-tag, social and geographical influences for poi recommendation. World Wide Web 22(3), 1135–1150 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the support of National Natural Science Foundation of China Nos. 61872249, 61836005 and 61672358.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weike Pan or Zhong Ming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, W., Pan, W., Ming, Z. (2020). Context-Aware Collaborative Ranking. In: Wang, F., et al. Information Retrieval Technology. AIRS 2019. Lecture Notes in Computer Science(), vol 12004. Springer, Cham. https://doi.org/10.1007/978-3-030-42835-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42835-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42834-1

  • Online ISBN: 978-3-030-42835-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics