Skip to main content

Using Numerical Simulations to Study the Atmospheric Boundary Layer

  • Conference paper
  • First Online:
Book cover Direct and Large Eddy Simulation XII (DLES 2019)

Part of the book series: ERCOFTAC Series ((ERCO,volume 27))

Included in the following conference series:

Abstract

The atmospheric boundary layer (ABL) is the lower part of the atmosphere, the part that is in contact with the surface and responds to changes in surface properties in a few hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansorge, C.: Scale dependence of atmosphere-surface coupling through similarity theory. Bound.-Layer Meteorol. 170, 1–27 (2019)

    Article  Google Scholar 

  2. Ansorge, C., Mellado, J.P.: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteorol. 153, 89–116 (2014)

    Article  Google Scholar 

  3. Armenio, V., Sarkar, S.: An investigation of stably stratified channel flow using large-eddy simulation. J. Fluid Mech. 459, 1–42 (2002)

    Article  Google Scholar 

  4. Brethouwer, G., Duguet, Y., Schlatter, P.: Turbulent-laminar coexistance in wall flows with Coriolis, buoyancy or Lorentz. J. Fluid Mech. 704, 137–172 (2012)

    Article  MathSciNet  Google Scholar 

  5. Coleman, G.N., Ferziger, J.H., Spalart, P.R.: Direct simulation of the stably stratified turbulent Ekman layer. J. Fluid Mech. 244, 677–712 (1992)

    Article  Google Scholar 

  6. Coleman, G.N., Ferziger, J.H., Spalart, P.R.: A numerical study of the convective boundary layer. Bound.-Layer Meteorol. 70, 247–272 (1994)

    Article  Google Scholar 

  7. Deardorff, J.W.: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 1211–1213 (1970)

    Article  Google Scholar 

  8. Deardorff, J.W.: A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn. 1, 377–410 (1970)

    Article  Google Scholar 

  9. Deardorff, J.W.: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972)

    Article  Google Scholar 

  10. Deardorff, J.W.: Cloud top entrainment instability. J. Atmos. Sci. 37, 131–147 (1980)

    Article  Google Scholar 

  11. Deardorff, J.W., Willis, G.E., Lilly, D.K.: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech. 35, 7–31 (1969)

    Article  Google Scholar 

  12. Deardorff, J.W., Willis, G.E., Stockton, B.H.: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech. 100, 41–64 (1980)

    Article  Google Scholar 

  13. Deusebio, E., Schlatter, G.B.P., Lindborg, E.: A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech. 755, 672–704 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dougherty, J.P.: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21, 210–213 (1961)

    Article  Google Scholar 

  15. Flores, O., Riley, J.: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteorol. 139, 241–259 (2011)

    Article  Google Scholar 

  16. Fox, D.G., Lilly, D.K.: Numerical simulation of turbulent flows. Rev. Geophys. Space Phys. 10, 51–72 (1972)

    Article  Google Scholar 

  17. Garcia, J.R., Mellado, J.P.: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci. 71, 1935–1955 (2014)

    Article  Google Scholar 

  18. García-Villalba, M., del Álamo, J.: Turbulence modification by stable stratification in channel flow. Phys. Fluids 23(045104), 1–22 (2011)

    Google Scholar 

  19. Haghshenas, A., Mellado, J.P.: Characterization of wind-shear effects on entrainment in a convective boundary layer. J. Fluid Mech. pp. 145–183 (2019)

    Google Scholar 

  20. Holtslag, A., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A., Bosveld, F., Cuxart, J., Lindvall, J., Steeneveld, G., Tjernström, M., van de Wiel, B.: Stable atmopsheric boundary layers and diurnal cycles. Bull. Am. Meteor. Soc. 94, 1691–1706 (2013)

    Article  Google Scholar 

  21. Ivey, G.N., Winters, K.B., Koseff, J.R.: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169–184 (2008)

    Article  MathSciNet  Google Scholar 

  22. Jacobitz, F., Sarkar, S., Atta, C.W.V.: Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261 (1997)

    Article  Google Scholar 

  23. Jen-La Plante, I., Ma, Y.F., Nurowska, K., Gerber, H., Khelif, D., Karpinska, K., Kopec, M.K., Kumala, W., Malinowski, S.P.: Physics of Stratocumulus Top (POST): turbulence characteristics. Atmos. Chem. Phys. 16, 9711–9725 (2016)

    Article  Google Scholar 

  24. Jonker, H.J.J., van Reeuwijk, M., Sullivan, P.P., Patton, E.G.: Interfacial layers in clear and cloudy atmospheric boundary layers. In: Proceedings of the 7th International Symposium on Turbulence, Heat and Mass Transfer, pp. 3–14 (2012)

    Google Scholar 

  25. Katzwinkel, J., Siebert, H., Shaw, R.: Observation of self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound.-Layer Meteorol. 145, 131–143 (2012)

    Article  Google Scholar 

  26. Lilly, D.K.: Models of cloud-topped mixed layers under strong inversion. Q. J. Roy. Meteorol. Soc. 94, 292–309 (1968)

    Article  Google Scholar 

  27. Mahrt, L.: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 23–45 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mason, P.J., Derbyshire, S.H.: Large-eddy simulation of the stably-stratified atmospheric boundary layer. Bound.-Layer Meteorol. 53, 117–162 (1990)

    Article  Google Scholar 

  29. Mellado, J.P.: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech. 41, 145–169 (2017)

    Article  MathSciNet  Google Scholar 

  30. Mellado, J.P., Bretherton, C.S., Stevens, B., Wyant, M.C.: DNS and LES of stratocumulus: better together. J. Adv. Model. Earth Syst. 10, 1421–1438 (2018)

    Article  Google Scholar 

  31. Mellado, J.P., Puche, M., van Heerwaarden, C.C.: Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres. Q. J. R. Meteorol. Soc. 143, 2403–2419 (2017)

    Article  Google Scholar 

  32. Mellado, J.P., Stevens, B., Schmidt, H.: Wind shear and buoyancy reversal at the top of stratocumulus. J. Atmos. Sci. 71, 1040–1057 (2014)

    Article  Google Scholar 

  33. Ozmidov, R.V.: On the turbulent exchange in a stably stratified ocean. Izv., Atmos. Oceanic Phys. Ser. 1, 853–860 (1965)

    Google Scholar 

  34. Randall, D.A., Coakley, J.A., Fairall, C.W., Kropfli, R.A., Lenschow, D.H.: Outlook for research on subtropical marine stratiform clouds. Bull. Am. Meteorol. Soc. 65, 1290–1301 (1984)

    Article  Google Scholar 

  35. Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., Balsamo, G.: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 5(2), 117–133 (2013)

    Article  Google Scholar 

  36. Shah, S.K., Bou-Zeid, E.: Direct numerical simulation of Ekman boundary layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494–539 (2014)

    Article  MathSciNet  Google Scholar 

  37. Stevens, B., Moeng, C.H., Ackerman, A.S., Bretherton, C.S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M.P., Lewellen, D.C., Lock, A., Müller, F., Stevens, D.E., Whelan, E., Zhu, P.: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev. 133, 1443–1462 (2005)

    Article  Google Scholar 

  38. Turner, D., Wulfmeyer, V., Berg, L.K., Schween, J.H.: Water vapor turbulence profiles in stationary continental convective boundary layers. J. Geophys. Res. Atmos 119, 11151–11165 (2014)

    Article  Google Scholar 

  39. Willis, G.E., Deardorff, J.W.: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci. 31, 1297–1307 (1974)

    Article  Google Scholar 

  40. Wood, R.: Stratocumulus clouds. Mon. Wea. Rev. 140, 2373–2423 (2012)

    Article  Google Scholar 

  41. Wulfmeyer, V., Muppa, S.K., Behrendt, A., Hammann, E., Späth, F., Sorbjan, Z., Turner, D., Hardesty, R.M.: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: theoretical description and a strategy for its confirmation with a novel Lidar system synergy. J. Atmos. Sci. 73, 667–692 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Mellado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mellado, J.P. (2020). Using Numerical Simulations to Study the Atmospheric Boundary Layer. In: García-Villalba, M., Kuerten, H., Salvetti, M. (eds) Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-42822-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42822-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42821-1

  • Online ISBN: 978-3-030-42822-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics