Skip to main content

Applications of Artificial Neural Networks in the Context of Power Systems

  • Chapter
  • First Online:
Artificial Intelligence Techniques for a Scalable Energy Transition

Abstract

In this chapter, we introduce various applications for artificial neural networks in the context of power systems. Due to a fast pace of development in recent years, multiple libraries for setting up and training artificial neural networks are available as open-source software. In the field of power system analysis, the open-source software pandapower enables broad-scale automation of power flow calculations. Based on these developments, we present multiple applications for grid planners and grid operators that are based on supervised learning. The first application is the approximation of power flows, including line contingencies, in annual time series simulations. It enables grid planners to detect violations of operational constraints quickly. Secondly, a monitoring method trained on a yearly time series uses a low number of measurements to deliver real-time insights into the grid’s state to grid operators. Similarly, grid operators can use artificial neural networks for building grid equivalents that provide information about external grids under dynamic conditions. Lastly, artificial neural networks have proven well-suited to determine grid loss as a function of topological features like line length, distributed generation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Ashraf, B. Rathore, S. Chakrabarti, Performance analysis of static network reduction methods commonly used in power systems, in 2014 Eighteenth National Power Systems Conference (NPSC) (2014), pp. 1–6. https://doi.org/10.1109/NPSC.2014.7103837

  2. R. Christie, IEEE 30-bus power flow test case (1961). http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm

  3. B.J. Claessens, P. Vrancx, F. Ruelens, Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans. Smart Grid 9(4), 3259–3269 (2018). https://doi.org/10.1109/TSG.2016.2629450

    Article  Google Scholar 

  4. P. Dimo, Nodal analysis of power systems. Abacus Bks. Editura Academiei Republicii Socialisté România (1975). https://books.google.de/books?id=4dAiAAAAMAAJ

    Google Scholar 

  5. T.E. Dy Liacco, S.C. Savulescu, K.A. Ramarao, An on-line topological equivalent of a power system. IEEE Trans. Power Apparatus Syst. PAS-97(5), 1550–1563 (1978). https://doi.org/10.1109/TPAS.1978.354647

    Article  Google Scholar 

  6. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  7. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, May 7–9, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  8. R. Leo, R.S. Milton, A. Kaviya, Multi agent reinforcement learning based distributed optimization of solar microgrid, in 2014 IEEE International Conference on Computational Intelligence and Computing Research (2014), pp. 1–7. https://doi.org/10.1109/ICCIC.2014.7238438

  9. D. Li, S.K. Jayaweera, Machine-learning aided optimal customer decisions for an interactive smart grid. IEEE Syst. J. 9(4), 1529–1540 (2015). https://doi.org/10.1109/JSYST.2014.2334637

    Article  Google Scholar 

  10. L. Li, K.G. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Efficient hyperparameter optimization and infinitely many armed bandits. CoRR abs/1603.06560 (2016). http://arxiv.org/abs/1603.06560

  11. C. Ma, S.R. Drauz, R. Bolgaryn, J.H. Menke, F. Schäfer, J. Dasenbrock, M. Braun, L. Hamann, M. Zink, K.H. Schmid, J. Estel, A comprehensive evaluation of the energy losses in distribution systems with high penetration of distributed generators, in 25th International Conference and Exhibition on Electricity Distribution (CIRED 2019) (2019)

    Google Scholar 

  12. S. Meinecke, et al., Simbench - benchmark data set for grid analysis, grid planning and grid operation management. https://simbench.de/en. Accessed 3 July 2019

  13. J.H. Menke, N. Bornhorst, M. Braun, Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. Int. J. Electr. Power Energy 113, 472–480 (2019)

    Article  Google Scholar 

  14. E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, J.G. Slootweg, On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 10, 3698–3708 (2019). https://doi.org/10.1109/TSG.2018.2834219

    Article  Google Scholar 

  15. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, in 31st Conference on Neural Information Processing Systems (NIPS-W) (2017)

    Google Scholar 

  16. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. F. Ruelens, B.J. Claessens, S. Vandael, S. Iacovella, P. Vingerhoets, R. Belmans, Demand response of a heterogeneous cluster of electric water heaters using batch reinforcement learning, in 2014 Power Systems Computation Conference (2014), pp. 1–7. https://doi.org/10.1109/PSCC.2014.7038106

  18. S.C. Savulescu, Equivalents for security analysis of power systems. IEEE Trans. Power Apparatus Syst. PAS-100(5), 2672–2682 (1981). https://doi.org/10.1109/TPAS.1981.316783

    Article  Google Scholar 

  19. F. Schäfer, J.H. Menke, M. Braun, Contingency analysis of power systems with artificial neural networks, in IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (2018)

    Google Scholar 

  20. E. Shayesteh, B.F. Hobbs, L. Söder, M. Amelin, ATC-based system reduction for planning power systems with correlated wind and loads. IEEE Trans. Power Syst. 30(1), 429–438 (2015). https://doi.org/10.1109/TPWRS.2014.2326615

    Article  Google Scholar 

  21. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017). https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  22. J. Stadler, H. Renner, Application of dynamic REI reduction, in IEEE PES Innovative Smart Grid Technologies Europe 2013 (2013), pp. 1–5. https://doi.org/10.1109/ISGTEurope.2013.6695311

  23. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (The MIT Press, Cambridge, 2018). http://incompleteideas.net/book/the-book-2nd.html

    MATH  Google Scholar 

  24. L. Thurner, A. Scheidler, F. Schäfer, J.H. Menke, J. Dollichon, F. Meier, S. Meinecke, M. Braun, Pandapower - an open-source python tool for convenient modeling, analysis, and optimization of electric power systems. IEEE Trans. Power Syst. 33(6), 6510–6521 (2018). https://doi.org/10.1109/TPWRS.2018.2829021

    Article  Google Scholar 

  25. G.K. Venayagamoorthy, R.K. Sharma, P.K. Gautam, A. Ahmadi, Dynamic energy management system for a smart microgrid. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1643–1656 (2016). https://doi.org/10.1109/TNNLS.2016.2514358

    Article  MathSciNet  Google Scholar 

  26. J.B. Ward, Equivalent circuits for power-flow studies. Trans. Am. Inst. Electr. Eng. 68(1), 373–382 (1949). https://doi.org/10.1109/T-AIEE.1949.5059947

    Article  Google Scholar 

  27. Z. Yan, Y. Xu, Data-driven load frequency control for stochastic power systems: a deep reinforcement learning method with continuous action search. IEEE Trans. Power Syst. 34(2), 1653–1656 (2019). https://doi.org/10.1109/TPWRS.2018.2881359

    Article  Google Scholar 

  28. D. Zhang, X. Han, C. Deng, Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J. Power Energy Syst. 4(3), 362–370 (2018). https://doi.org/10.17775/CSEEJPES.2018.00520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik Menke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menke, JH., Dipp, M., Liu, Z., Ma, C., Schäfer, F., Braun, M. (2020). Applications of Artificial Neural Networks in the Context of Power Systems. In: Sayed-Mouchaweh, M. (eds) Artificial Intelligence Techniques for a Scalable Energy Transition. Springer, Cham. https://doi.org/10.1007/978-3-030-42726-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42726-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42725-2

  • Online ISBN: 978-3-030-42726-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics