Skip to main content

Skeletal Muscle Aging Atrophy: Assessment and Exercise-Based Treatment

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Abstract

In the ordinary course of aging, individuals change their body composition, mainly reducing their skeletal muscle mass and increasing their fat mass. In association, muscle strength and functionality also decrease. The geriatric assessment allows knowing the baseline situation of the patients, determines the impact of diseases, and defines specific treatments. There are various tools to evaluate the health condition of older people. These tools include the assessment scales of necessary Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL), physical and functional assessment scales, and instruments that assess the cognitive state of the person. There are several strategies that have been proposed to combat skeletal muscle atrophy due to aging, such as physical exercise, nutritional supplements, or drugs. Some researchers have highlighted the efficacy of the combination of the mentioned strategies. In this chapter, we will focus only on physical exercise as a strategy to reduce skeletal muscle loss during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations, Department of Economic and Social Affairs PD. World Population Ageing 2019: Highlights https://www.un.org/development/desa/family/wp-content/uploads/sites/23/2018/05/BACKGROUND-PAPER.SDGs1611.FINAL_.pdf

  2. World Health Organization (2018) Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

  3. Short KR, Nair KS (2000) The effect of age on protein metabolism. Curr Opin Clin Nutr Metab Care 3(1):39–44

    Article  CAS  PubMed  Google Scholar 

  4. Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C (2008) Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 129(10):593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287(4):C834–C343

    Article  CAS  PubMed  Google Scholar 

  6. Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF et al (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7(29):44879–44905

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N (2016) Autophagy as a potential target for sarcopenia. J Cell Physiol 231(7):1450–1459

    Article  CAS  PubMed  Google Scholar 

  8. Dalle S, Rossmeislova L, Koppo K (2017) The role of inflammation in age-related sarcopenia. Front Physiol 8:1045. https://doi.org/10.3389/fphys.2017.01045

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miljkovic N, Lim JY, Miljkovic I, Frontera WR (2015) Aging of skeletal muscle fibers. Ann Rehabil Med 39(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burd NA, Gorissen SH, Van Loon LJC (2013) Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev 41(3):169–173

    Article  PubMed  Google Scholar 

  11. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5):990S–991S

    Article  CAS  PubMed  Google Scholar 

  12. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393(10191):2636–2646

    Article  PubMed  Google Scholar 

  13. Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel index. Md State Med J 14:61–65

    CAS  PubMed  Google Scholar 

  14. Katz S, Heiple KG, Downs TD, Ford AB, Scott CP (1967) Long term course of 147 patients with fracture of the hip. Surg Gynecol Obstet 124(6):1219–1230

    CAS  PubMed  Google Scholar 

  15. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9(3):179–186

    Article  CAS  PubMed  Google Scholar 

  16. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  17. Podsiadlo DRS (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Article  CAS  PubMed  Google Scholar 

  18. Eladio Mancilla S, José Valenzuela H, Máximo Escobar C (2015) Timed up and go right and left unipodal stance results in Chilean older people with different degrees of disability. Rev Med Chil 143(1):39–46

    Article  Google Scholar 

  19. Tinetti ME, Franklin Williams T, Mayewski R (1986) Fall risk index for elderly patients based on number of chronic disabilities. Am J Med 80(3):429–434

    Article  CAS  PubMed  Google Scholar 

  20. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332(9):556–561

    Article  CAS  PubMed  Google Scholar 

  21. Rikli RE, Jones CJ (2000) Senior fitness test manual. Human Kinetics Publishers, Champaign. ISBN-10: 9780736033565

    Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  23. Pfeffer RI, Kurosaki TT, Harrah CH, Chance JM, Filos S (1982) Measurement of functional activities in older adults in the community. J Gerontol 37(3):323–329

    Article  CAS  PubMed  Google Scholar 

  24. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M et al (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49

    Article  PubMed  Google Scholar 

  25. Stuck AE, Siu AL, Wieland GD, Rubenstein LZ, Adams J (1993) Comprehensive geriatric assessment: a meta-analysis of controlled trials. Lancet 342(8878):1032–1036

    Article  CAS  PubMed  Google Scholar 

  26. González N, Bilbao A, Forjaz MJ, Ayala A, Orive M, Garcia-Gutierrez S et al (2018) Psychometric characteristics of the Spanish version of the Barthel index. Aging Clin Exp Res 30(5):489–497

    Article  PubMed  Google Scholar 

  27. Granger CV, Hamilton BB, Gresham GE (1988) The stroke rehabilitation outcome study--part I: general description. Arch Phys Med Rehabil 69(7):506–509

    CAS  PubMed  Google Scholar 

  28. Granger CV, Hamilton BB, Gresham GE, Kramer AA (1989) The stroke rehabilitation outcome study: part II. Relative merits of the total Barthel index score and a four-item subscore in predicting patient outcomes. Arch Phys Med Rehabil 70(2):100–103

    CAS  PubMed  Google Scholar 

  29. Mahoney FI, Wood OH, Barthel DW (1958) Rehabilitation of chronically ill patients: the influence of complications on the final goal. South Med J 51(5):605–609

    Article  CAS  PubMed  Google Scholar 

  30. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW (1963) Studies of illness in the aged: the index of ADL: a standardized measure of biological and psychosocial function. JAMA 185(12):914–919

    Article  CAS  Google Scholar 

  31. Katz S, Downs TD, Cash HR, Grotz RC (1970) Progress in development of the index of ADL. Gerontologist 10(1):20–30

    Article  CAS  PubMed  Google Scholar 

  32. Jiménez-Caballero PE, López-Espuela F, Portilla-Cuenca JC, Pedrera-Zamorano JD, Jiménez-Gracia MA, Lavado-García JM et al (2019) Evaluation of the instrumental activities of daily living following a stroke by means of the Lawton and Brody scale. Rev Neurol 55(6):337–242

    Google Scholar 

  33. Graf C (2008) The Lawton instrumental activities of daily living scale. Medsurg Nurs 17(5):343–344

    PubMed  Google Scholar 

  34. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL (2011) Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes 4:127. https://doi.org/10.1186/1756-0500-4-127

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carmeli E, Patish H, Coleman R (2003) The aging hand. J Gerontol A Biol Sci Med Sci 58(2):146–152

    Article  PubMed  Google Scholar 

  36. Kong YK, Lee JH, Shin JM, Shim HH, Kim JK, Cho MU et al (2019) Evaluation of subjective perceived rating for grip strength depending on handedness for various target force levels. Work 62(1):21–26

    Article  PubMed  Google Scholar 

  37. Sanders JB, Bremmer MA, Comijs HC, van de Ven PM, Deeg DJH, Beekman ATF (2017) Gait speed and processing speed as clinical markers for geriatric health outcomes. Am J Geriatr Psychiatry 25(4):374–385

    Article  PubMed  Google Scholar 

  38. Hackett RA, Davies-Kershaw H, Cadar D, Orrell M, Steptoe A (2018) Walking speed, cognitive function, and dementia risk in the English longitudinal study of ageing. J Am Geriatr Soc 66(9):1670–1675

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hofheinz M, Mibs M (2016) The prognostic validity of the timed up and go test with a dual task for predicting the risk of falls in the elderly. Gerontol Geriatr Med 2:2333721416637798. https://doi.org/10.1177/2333721416637798

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barry E, Galvin R, Keogh C, Horgan F, Fahey T (2014) Is the timed up and go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta- analysis. BMC Geriatr 14:14. https://doi.org/10.1186/1471-2318-14-14

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ortega A (2016) Prevention of falls in the elderly: a review of new concepts based on the evidence. Eur J Investig Heal Psychol Educ 6(2):71–82

    Article  Google Scholar 

  42. Guevara CR, Lugo Validez LH (2012) Validity and reliability of Tinetti Scale for Colombian people. Revista Colombiana de Reumatología 19:213–233

    Article  Google Scholar 

  43. Curcio F, Basile C, Liguori I, Della-Morte D, Gargiulo G, Galizia G et al (2016) Tinetti mobility test is related to muscle mass and strength in non-institutionalized elderly people. Age (Omaha) 38(5–6):525–533

    Article  Google Scholar 

  44. Stookey AD, Katzel LI, Steinbrenner G, Shaughnessy M, Ivey FM (2014) The short physical performance battery as a predictor of functional capacity after stroke. J Stroke Cerebrovasc Dis 23(1):130–135

    Article  PubMed  Google Scholar 

  45. Volpato S, Cavalieri M, Sioulis F, Guerra G, Maraldi C, Zuliani G et al (2011) Predictive value of the short physical performance battery following hospitalization in older patients. J Gerontol Ser A Biol Sci Med Sci 66(1):89–96

    Article  Google Scholar 

  46. Langhammer B, Stanghelle JK (2015) The senior fitness test. J Physiother 61(3):163. https://doi.org/10.1016/j.jphys.2015.04.001

    Article  PubMed  Google Scholar 

  47. Rikli RE, Jones CJ (2013) Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 53(2):255–267

    Article  PubMed  Google Scholar 

  48. Creavin ST, Wisniewski S, Noel-Storr AH, Trevelyan CM, Hampton T, Rayment D et al (2016) Mini-mental state examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst Rev 1:CD011145. https://doi.org/10.1002/14651858.CD011145.pub2

    Article  Google Scholar 

  49. Muñoz Silva CA, Rojas Orellana PA, Marzuca-Nassr GN (2015) Criterios de valoración geriátrica integral en adultos mayores con dependencia moderada y severa en centros de atención primaria en chile. Rev Med Chil 143(5):612–618

    Article  PubMed  Google Scholar 

  50. Pfeffer RI, Kurosaki TT, Chance JM, Filos S, Bates D (1984) Use of the mental function index in older adults: reliability, validity, and measurement of change over time. Am J Epidemiol 120(6):922–935

    Article  CAS  PubMed  Google Scholar 

  51. Brink TL (1989) Proper scoring of the geriatric depression scale. J Am Geriatr Soc 37(8):819–819

    Article  CAS  PubMed  Google Scholar 

  52. Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D et al (2003) Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc 51(4):451–458

    Article  PubMed  Google Scholar 

  53. Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E et al (2008) Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci 63(10):1076–1081

    Article  PubMed  Google Scholar 

  54. Bodilsen AC, Pedersen MM, Petersen J, Beyer N, Andersen O, Smith LL et al (2013) Acute hospitalization of the older patient: changes in muscle strength and functional performance during hospitalization and 30 days after discharge. Am J Phys Med Rehabil 92(9):789–796

    Article  PubMed  Google Scholar 

  55. Kramer CL (2017) Intensive care unit–acquired weakness. Neurol Clin 35(4):723–736

    Article  PubMed  Google Scholar 

  56. Schreiber A, Bertoni M, Goligher EC (2018) Avoiding respiratory and peripheral muscle injury during mechanical ventilation: diaphragm-protective ventilation and early mobilization. Crit Care Clin 34(3):357–381

    Article  PubMed  Google Scholar 

  57. Ferrante LE, Pisani MA, Murphy TE, Gahbauer EA, Leo-Summers LS, Gill TM (2016) Factors associated with functional recovery among older intensive care unit survivors. Am J Respir Crit Care Med 194(3):299–307

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dos Santos C, Hussain SNA, Mathur S, Picard M, Herridge M, Correa J et al (2016) Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay: a pilot study. Am J Respir Crit Care Med 194(7):821–830

    Article  PubMed  Google Scholar 

  59. Rossi AP, Rubele S, Pelizzari L, Fantin F, Morgante S, Marchi O et al (2017) Hospitalization effects on physical performance and muscle strength in hospitalized elderly subjects. J Gerontol Geriatr Res 06(02). https://doi.org/10.4172/2167-7182.1000401

  60. Guidet B, Vallet H, Boddaert J, de Lange DW, Morandi A, Leblanc G et al (2018) Caring for the critically ill patients over 80: a narrative review. Ann Intensive Care 8(1):114. https://doi.org/10.1186/s13613-018-0458-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One 12(1):e0169548. https://doi.org/10.1371/journal.pone.0169548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Steffl M, Sima J, Shiells K, Holmerova I (2017) The increase in health care costs associated with muscle weakness in older people without long-term illnesses in the Czech Republic: results from the survey of health, ageing and retirement in Europe (SHARE). Clin Interv Aging 12:2003–2007

    Article  PubMed  PubMed Central  Google Scholar 

  63. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85

    Article  PubMed  Google Scholar 

  64. Beaudart C, Rizzoli R, Bruyère O, Reginster J-Y, Biver E (2014) Sarcopenia: burden and challenges for public health. Arch Public Health 72(1):45. https://doi.org/10.1186/2049-3258-72-45

    Article  PubMed  PubMed Central  Google Scholar 

  65. Van Vugt JLA, Buettner S, Levolger S, Coebergh Van Den Braak RRJ, Suker M, Gaspersz MP et al (2017) Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract. PLoS One 12(10):e0186547. https://doi.org/10.1371/journal.pone.0186547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goates S, Du K, Arensberg MB, Gaillard T, Guralnik J, Pereira SL (2019) Economic impact of hospitalizations in US adults with sarcopenia. J Frailty Aging 8(2):93–99

    CAS  PubMed  Google Scholar 

  67. Parry SM, Huang M, Needham DM (2019) Evaluating physical functioning in critical care: considerations for clinical practice and research. Crit Care 21(1):249. https://doi.org/10.1186/s13054-017-1827-6

    Article  Google Scholar 

  68. Looijaard WGPM, Molinger J, Weijs PJM (2018) Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care 24(4):241–247

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mijnarends DM, Meijers JMM, Halfens RJG, ter Borg S, Luiking YC, Verlaan S et al (2013) Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc 14(3):170–178

    Article  PubMed  Google Scholar 

  70. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V et al (2008) Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med 40(3):185–189

    Article  PubMed  Google Scholar 

  71. Yamanouchi A, Yoshimura Y, Matsumoto Y, Jeong S (2016) Severely decreased muscle mass among older patients hospitalized in a long-term care ward in Japan. J Nutr Sci Vitaminol (Tokyo) 62(4):229–234

    Article  CAS  Google Scholar 

  72. Welch C, Hassan-Smith ZK, Greig CA, Lord JM, Jackson TA (2018) Acute sarcopenia secondary to hospitalisation – an emerging condition affecting older adults. Aging Dis 9(1):151–164

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parry SM, Granger CL, Berney S, Jones J, Beach L, El-Ansary D et al (2015) Assessment of impairment and activity limitations in the critically ill: a systematic review of measurement instruments and their clinimetric properties. Intensive Care Med 41(5):744–762

    Article  PubMed  Google Scholar 

  74. Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R et al (2015) Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care 30(5):1151.e9–1151.e14

    Google Scholar 

  75. Puthucheary ZA, Phadke R, Rawal J, McPhail MJW, Sidhu PS, Rowlerson A et al (2015) Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med 43(8):1603–1611

    Article  PubMed  Google Scholar 

  76. Connolly B, Thompson A, Moxham J, Hart N (2012) Relationship of Medical Research Council sum-score with physical function in patients post critical illness. Am J Respir Crit Care Med 185:A3075–A3075

    Google Scholar 

  77. Parry SM, Berney S, Granger CL, Dunlop DL, Murphy L, El-Ansary D et al (2015) A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study. Crit Care 19(1):52. https://doi.org/10.1186/s13054-015-0780-5

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, De Jonghe B et al (2009) A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 37(10 Suppl):S299–S308

    Article  PubMed  Google Scholar 

  79. Brunello AG, Haenggi M, Wigger O, Porta F, Takala J, Jakob SM (2010) Usefulness of a clinical diagnosis of ICU-acquired paresis to predict outcome in patients with SIRS and acute respiratory failure. Intensive Care Med 36(1):66–74

    Article  PubMed  Google Scholar 

  80. Yamada M, Kimura Y, Ishiyama D, Nishio N, Abe Y, Kakehi T et al (2017) Differential characteristics of skeletal muscle in community-dwelling older adults. J Am Med Dir Assoc 18(9):807.e9–807.e16

    Google Scholar 

  81. Sharshar T, Bastuji-Garin S, Stevens RD, Durand MC, Malissin I, Rodriguez P et al (2009) Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med 37(12):3047–3053

    Article  PubMed  Google Scholar 

  82. Ali NA, O’Brien JM, Hoffmann SP, Phillips G, Garland A, Finley JCW et al (2008) Acquired weakness, handgrip strength, and mortality in critically III patients. Am J Respir Crit Care Med 178(3):261–268

    Article  PubMed  Google Scholar 

  83. Lee JJ, Waak K, Grosse-Sundrup M, Xue F, Lee J, Chipman D et al (2012) Global muscle strength but not grip strength predicts mortality and length of stay in a general population in a surgical intensive care unit. Phys Ther 92(12):1546–1555

    Article  PubMed  Google Scholar 

  84. Vanpee G, Hermans G, Segers J, Gosselink R (2014) Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med 42(3):701–711

    Article  PubMed  Google Scholar 

  85. García-Peña C, García-Fabela LC, Gutiérrez-Robledo LM, García-González JJ, Arango-Lopera VE, Pérez-Zepeda MU (2013) Handgrip strength predicts functional decline at discharge in hospitalized male elderly: a hospital cohort study. PLoS One 8(7):e69849. https://doi.org/10.1371/journal.pone.0069849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roberson AR, Starkweather A, Grossman C, Acevedo E, Salyer J (2018) Influence of muscle strength on early mobility in critically ill adult patients: systematic literature review. Hear Lung J Acute Crit Care 47(1):1–9

    Article  Google Scholar 

  87. Bohannon RW (2008) Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther 31(1):3–10

    Article  PubMed  Google Scholar 

  88. Mohamed-Hussein AAR, Makhlouf HA, Selim ZI, Gamaleldin Saleh W (2018) Association between hand grip strength with weaning and intensive care outcomes in COPD patients: a pilot study. Clin Respir J 12(10):2475–2479

    Article  CAS  PubMed  Google Scholar 

  89. Cottereau G, Dres M, Avenel A, Fichet J, Jacobs FM, Prat D et al (2015) Handgrip strength predicts difficult weaning but not extubation failure in mechanically ventilated subjects. Respir Care 60(8):1097–1104

    Article  PubMed  Google Scholar 

  90. Syddall H, Cooper C, Martin F, Briggs R, Sayer AA (2003) Is grip strength a useful single marker of frailty? Age Ageing 32(6):650–656

    Article  PubMed  Google Scholar 

  91. Schmidt D, Coelho AC, Vieira FN, Torres VF, Savi A, Vieira SRR (2019) Critical illness polyneuromyopathy in septic patients: is it possible to diagnose it in a bedside clinical examination? Arq Neuropsiquiatr 77(1):33–38

    Article  PubMed  Google Scholar 

  92. Bragança RD, Ravetti CG, Barreto L, Ataíde TBLS, Carneiro RM, Teixeira AL et al (2019) Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: a prospective study. Hear Lung 48(6):532–537

    Article  Google Scholar 

  93. Reid CL, Campbell IT, Little RA (2014) Muscle wasting and energy balance in critical illness. Clin Nutr 23(2):273–280

    Article  Google Scholar 

  94. Baldwin CE, Bersten AD (2014) Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther 94(1):68–82

    Article  PubMed  Google Scholar 

  95. Grimm A, Teschner U, Porzelius C, Ludewig K, Zielske J, Witte OW et al (2013) Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care 17(5):R227. https://doi.org/10.1186/cc13050

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW et al (2015) Interobserver reliability of quantitative muscle sonographic analysis in the critically ill population. J Ultrasound Med 34(7):1191–1200

    Article  PubMed  Google Scholar 

  97. Perkisas S, Baudry S, Bauer J, Beckwée D, De Cock AM, Hobbelen H et al (2018) Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. Eur Geriatr Med 9(6):739–757

    Article  Google Scholar 

  98. Aubertin-Leheudre M, Martel D, Narici M, Bonnefoy M (2019) The usefulness of muscle architecture assessed with ultrasound to identify hospitalized older adults with physical decline. Exp Gerontol 125:110678. https://doi.org/10.1016/j.exger.2019.110678

    Article  PubMed  Google Scholar 

  99. Martone AM, Bianchi L, Abete P, Bellelli G, Bo M, Cherubini A et al (2017) The incidence of sarcopenia among hospitalized older patients: results from the Glisten study. J Cachexia Sarcopenia Muscle 8(6):907–914

    Article  PubMed  PubMed Central  Google Scholar 

  100. Woodrow G (2009) Body composition analysis techniques in the aged adult: indications and limitations. Curr Opin Clin Nutr Metab Care 12(1):8–14

    Article  PubMed  Google Scholar 

  101. Wang ZM, Pierson RN, Heymsfield SB (1992) The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr 56(1):19–28

    Article  CAS  PubMed  Google Scholar 

  102. Wang ZM, Heshka S, Pierson RN, Heymsfield SB (1995) Systematic organization of body-composition methodology: an overview with emphasis on component-based methods. Am J Clin Nutr 61(3):457–465

    Article  CAS  PubMed  Google Scholar 

  103. Pietrobelli A, Heymsfield S, Wang Z, Gallagher D (2019) Multi-component body composition models: recent advances and future directions. Eur J Clin Nutr 55(2):69–75

    Article  Google Scholar 

  104. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Phys 275(2):E249–E258

    CAS  Google Scholar 

  105. Prado CMM, Heymsfield SB (2014) Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enter Nutr 38(8):940–953

    Article  Google Scholar 

  106. Ross R, Janssen I (2005) Human body composition. 2nd ed. Heymsfield SB, Lohman T, Wang Z GS (eds) Human kinetics (ADVANTAGE) (Consignment), Leeds, United Kingdom, 2nd revised edition, pp 89–108. ISBN-10: 0736046550

    Google Scholar 

  107. Chang G, Wang L, Cárdenas-Blanco A, Schweitzer ME, Recht MP, Regatte RR (2010) Biochemical and physiological MR imaging of skeletal muscle at 7 Tesla and above. Semin Musculoskelet Radiol 14(2):269–278

    Article  PubMed  Google Scholar 

  108. Alizai H, Chang G, Regatte RR (2015) MRI of the musculoskeletal system: advanced applications using high and ultrahigh field MRI. Semin Musculoskelet Radiol 19(4):363–374

    Article  PubMed  Google Scholar 

  109. Parida GK, Roy SG, Kumar R (2017) FDG-PET/CT in skeletal muscle: pitfalls and pathologies. Semin Nucl Med 47(4):362–372

    Article  PubMed  Google Scholar 

  110. Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S (2019) Magnetic resonance imaging of the musculoskeletal system at 7T: morphological imaging and beyond. Top Magn Reson Imaging 28(3):125–135

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lustgarten MS, Fielding RA (2011) Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Heal Aging 15(5):368–375

    Article  CAS  Google Scholar 

  112. Mattsson S, Thomas BJ (2006) Development of methods for body composition studies. Phys Med Biol 51(13):R203–R228

    Article  CAS  PubMed  Google Scholar 

  113. Kelley DE, Slasky BS, Janosky J (1991) Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr 54(3):509–515

    Article  CAS  PubMed  Google Scholar 

  114. Ross R (2003) Advances in the application of imaging methods in applied and clinical physiology. Acta Diabetol 40(Suppl 1):S45–S50

    Article  PubMed  Google Scholar 

  115. Engelke K, Museyko O, Wang L, Laredo JD (2018) Quantitative analysis of skeletal muscle by computed tomography imaging – state of the art. J Orthop Translat 15:91–103

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shen W, Punyanitya M, Wang ZM, Gallagher D, St. Onge MP, Albu J et al (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97(6):2333–2338

    Article  PubMed  Google Scholar 

  117. Lukaski HC (1993) Soft tissue composition and bone mineral status: evaluation by dual-energy X-ray absorptiometry. J Nutr 123(2 suppl):438–443

    Article  CAS  PubMed  Google Scholar 

  118. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM (2014) Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 5(1):9–18

    Article  PubMed  PubMed Central  Google Scholar 

  119. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20(11):2707–2714

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cawthon PM (2015) Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom 18(4):467–471

    Article  PubMed  Google Scholar 

  121. Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB (2017) Body composition by DXA. Bone 104:101–105

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guglielmi G, Ponti F, Agostini M, Amadori M, Battista G, Bazzocchi A (2016) The role of DXA in sarcopenia. Aging Clin Exp Res 28(6):1047–1060

    Article  PubMed  Google Scholar 

  123. Offord NJ, Witham MD (2017) The emergence of sarcopenia as an important entity in older people. Clin Med (Lond) 17(4):363–366

    Article  Google Scholar 

  124. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89(2):465–471

    Article  CAS  PubMed  Google Scholar 

  125. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159(4):413–421

    Article  PubMed  Google Scholar 

  126. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39(4):412–423

    Article  PubMed  PubMed Central  Google Scholar 

  127. Haapala I, Hirvonen A, Niskanen L, Uusitupa M, Kröger H, Alhava E et al (2002) Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Physiol Funct Imaging 22(6):383–391

    Article  PubMed  Google Scholar 

  128. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J (2015) Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc 74(4):355–366

    Article  PubMed  Google Scholar 

  129. Sergi G, De Rui M, Veronese N, Bolzetta F, Berton L, Carraro S et al (2015) Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr 34(4):667–673

    Article  PubMed  Google Scholar 

  130. Landi F, Martone AM, Calvani R, Marzetti E (2014) Sarcopenia risk screening tool: a new strategy for clinical practice. J Am Med Dir Assoc 15(9):613–614

    Article  PubMed  Google Scholar 

  131. Landi F, Onder G, Russo A, Liperoti R, Tosato M, Martone AM et al (2014) Calf circumference, frailty and physical performance among older adults living in the community. Clin Nutr 33(3):539–544

    Article  PubMed  Google Scholar 

  132. Heymsfield SB, Casper K (1987) Anthropometric assessment of the adult hospitalized patient. J Parenter Enter Nutr 11(5 suppl):36S–41S

    Article  CAS  Google Scholar 

  133. Heymsfield SB, Stevens V, Noel R, McManus C, Smith J, Nixon D (1982) Biochemical composition of muscle in normal and semistarved human subjects: relevance to anthropometric measurements. Am J Clin Nutr 36(1):131–142

    Article  CAS  PubMed  Google Scholar 

  134. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R et al (2017) Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29(1):19–27

    Article  PubMed  Google Scholar 

  135. Patrick JM, Bassey EJ, Fentem PH (1982) Changes in body fat and muscle in manual workers at and after retirement. Eur J Appl Physiol Occup Physiol 49(2):187–196

    Article  CAS  PubMed  Google Scholar 

  136. Pearson MB, Bassey EJ, Bendall MJ (1985) The effects of age on muscle strength and anthropometric indices within a group of elderly men and women. Age Ageing 14(4):230–234

    Article  CAS  PubMed  Google Scholar 

  137. http://www.who.int/childgrowth/publications/physical_status/en/

  138. Ukegbu PO, Kruger HS, Meyer JD, Nienaber-Rousseau C, Botha-Ravyse C, Moss SJ et al (2018) The association between calf circumference and appendicular skeletal muscle mass index of black urban women in Tlokwe City. J Endocrinol Metab Diabetes 23(3):86–90

    Google Scholar 

  139. Kim M, Won CW (2019) Prevalence of sarcopenia in community-dwelling older adults using the definition of the European Working Group on Sarcopenia in Older People 2: findings from the Korean Frailty and Aging Cohort Study. Age Ageing 48(6):910–916

    Article  PubMed  Google Scholar 

  140. Kusaka S, Takahashi T, Hiyama Y, Kusumoto Y, Tsuchiya J, Umeda M (2017) Large calf circumference indicates non-sarcopenia despite body mass. J Phys Ther Sci 29(11):1925–1928

    Article  PubMed  PubMed Central  Google Scholar 

  141. Pagotto V, Santos KFD, Malaquias SG, Bachion MM, Silveira EA (2018) Calf circumference: clinical validation for evaluation of muscle mass in the elderly. Rev Bras 71(2):322–328

    Google Scholar 

  142. Andrew Shanely R, Zwetsloot KA, Travis Triplett N, Meaney MP, Farris GE, Nieman DC (2014) Human skeletal muscle biopsy procedures using the modified Bergström technique. J Vis Exp 91:51812. https://doi.org/10.3791/51812

    Article  Google Scholar 

  143. Duchenne GB (1868) Recherches sur la paralysie musculaire pseudo-hypertrophique ou paralysie myoo-sclerosique. Archs Gen Med 6(5)

    Google Scholar 

  144. Bergström J (1962) Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens. Scand J Clin Lab Invest 14(Supp 68):7–110

    Google Scholar 

  145. Bergström J, Hultman E (1967) A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest 19(3):218–228

    Article  PubMed  Google Scholar 

  146. Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenous exercise when fed carbohydrate. J Appl Physiol 61(1):165–172

    Article  CAS  PubMed  Google Scholar 

  147. Utter AC, Kang J, Nieman DC, Dumke CL, McAnulty SR, Vinci DM et al (2004) Carbohydrate supplementation and perceived exertion during prolonged running. Med Sci Sports Exerc 36(6):1036–1041

    Article  CAS  PubMed  Google Scholar 

  148. Horstman AMH, Backx EMP, Smeets JSJ, Marzuca-Nassr GN, Van Kranenburg J, De Boer D et al (2019) Nandrolone decanoate administration does not attenuate muscle atrophy during a short period of disuse. PLoS One 14(1):e0210823. https://doi.org/10.1371/journal.pone.0210823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Langer HT, Senden JMG, Gijsen AP, Kempa S, van Loon LJC, Spuler S (2018) Muscle atrophy due to nerve damage is accompanied by elevated myofibrillar protein synthesis rates. Front Physiol 9:1220. https://doi.org/10.3389/fphys.2018.01220

    Article  PubMed  PubMed Central  Google Scholar 

  150. Holloway TM, Snijders T, Van Kranenburg J, Van Loon LJC, Verdijk LB (2018) Temporal response of angiogenesis and hypertrophy to resistance training in young men. Med Sci Sports Exerc 50(1):36–45

    Article  PubMed  Google Scholar 

  151. Niemeijer VM, Snijders T, Verdijk LB, Van Kranenburg J, Groen BBL, Holwerda AM et al (2018) Skeletal muscle fiber characteristics in patients with chronic heart failure: impact of disease severity and relation with muscle oxygenation during exercise. J Appl Physiol 125(4):1266–1276

    Article  CAS  Google Scholar 

  152. Kilroe SP, Fulford J, Holwerda AM, Jackman SR, Lee BP, Gijsen AP et al (2019) Short-term muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates. Am J Physiol Endocrinol Metab 19. https://doi.org/10.1152/ajpendo.00360.2019. [Epub ahead of print]

  153. Dirks ML, Smeets JSJ, Holwerda AM, Kouw IWK, Marzuca-Nassr GN, Gijsen AP et al (2019) Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am J Physiol Endocrinol Metab 316(3):E536–E545

    Article  CAS  PubMed  Google Scholar 

  154. Tsintzas K, Stephens FB, Snijders T, Wall BT, Cooper S, Mallinson J et al (2017) Intramyocellular lipid content and lipogenic gene expression responses following a single bout of resistance type exercise differ between young and older men. Exp Gerontol 93:36–45

    Article  CAS  PubMed  Google Scholar 

  155. Whitfield J, Ludzki A, Heigenhauser GJF, Senden JMG, Verdijk LB, van Loon LJC et al (2016) Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. J Physiol 594(2):421–435

    Article  CAS  PubMed  Google Scholar 

  156. Wullems JA, Verschueren SMP, Degens H, Morse CI, Onambélé GL (2016) A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology 17(3):547–565

    Article  PubMed  PubMed Central  Google Scholar 

  157. Watson KB, Carlson SA, Gunn JP, Galuska DA, O’Connor A, Greenlund KJ et al (2014) Physical inactivity among adults aged 50 years and older – United States, 2014. MMWR Morb Mortal Wkly Rep 65(36):954–958

    Article  Google Scholar 

  158. Mora JC, Valencia WM (2018) Exercise and older adults. Clin Geriatr Med 34(1):145–162

    Article  PubMed  Google Scholar 

  159. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, American College of Sports Medicine et al (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41(7):1510–1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c

    Article  PubMed  Google Scholar 

  160. Peterson MD, Rhea MR, Sen A, Gordon PM (2010) Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 9(3):226–237

    Article  PubMed  PubMed Central  Google Scholar 

  161. Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43(2):249–258

    Article  PubMed  PubMed Central  Google Scholar 

  162. Seals DR, DeSouza CA, Donato AJ, Tanaka H (2008) Habitual exercise and arterial aging. J Appl Physiol (1985) 105(4):1323–1332

    Article  Google Scholar 

  163. Sayers SP, Gibson K (2010) A comparison of high-speed power training and traditional slow-speed resistance training in older men and women. J Strength Cond Res 24(12):3369–3380

    Article  PubMed  Google Scholar 

  164. Stathokostas L, McDonald MW, Little RMD, Paterson DH (2013) Flexibility of older adults aged 55–86 years and the influence of physical activity. J Aging Res 2013:743843. https://doi.org/10.1155/2013/743843

    Article  PubMed  PubMed Central  Google Scholar 

  165. Montero-Fernández N, Serra-Rexach JA (2013) Role of exercise on sarcopenia in the elderly. Eur J Phys Rehabil Med 49(1):131–143

    PubMed  Google Scholar 

  166. Dunsky A (2019) The effect of balance and coordination exercises on quality of life in older adults : a mini-review. Front Aging Neurosci 11:318. https://doi.org/10.3389/fnagi.2019.00318

    Article  PubMed  PubMed Central  Google Scholar 

  167. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD et al (2019) Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8):2019–2052

    Article  PubMed  Google Scholar 

  168. Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB et al (2011) Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol Ser A Biol Sci Med Sci 60(11):1425–1431

    Article  Google Scholar 

  169. Kraemer WJ, Ratamess NA, Flanagan SD, Shurley JP, Todd JS, Todd TC (2017) Understanding the science of resistance training: an evolutionary perspective. Sport Med 47(12):2415–2435

    Article  Google Scholar 

  170. Galloza J, Castillo B, Micheo W (2017) Benefits of exercise in the older population. Phys Med Rehabil Clin N Am 28(4):659–669

    Article  PubMed  Google Scholar 

  171. Phu S, Boersma D, Duque G (2015) Exercise and Sarcopenia. J Clin Densitom 18(4):488–492

    Article  PubMed  Google Scholar 

  172. Seals DR, Walker AE, Pierce GL, Lesniewski LA (2009) Habitual exercise and vascular ageing. J Physiol 587(Pt 23):5541–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rivera-Brown AM, Frontera WR (2012) Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R 4(11):797–804

    Article  PubMed  Google Scholar 

  174. Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA et al (2009) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297(5):R1452–R1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sipilä S, Elorinne M, Alen M, Suominen H, Kovanen V (1997) Effects of strength and endurance training on muscle fibre characteristics in elderly women. Clin Physiol 17(5):459–474

    Article  PubMed  Google Scholar 

  176. Liu Y, Ye W, Chen Q, Zhang Y, Kuo CH, Korivi M (2019) Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: a systematic review and meta-analysis. Int J Environ Res Public Health 16(1). pii: E140. https://doi.org/10.3390/ijerph16010140

  177. Micheo W, Baerga L, Miranda G (2012) Basic principles regarding strength, flexibility, and stability exercises. PM R 4(11):805–811

    Article  PubMed  Google Scholar 

  178. Seco J, Abecia LC, Echevarría E, Barbero I, Torres-Unda J, Rodriguez V et al (2013) A long-term physical activity training program increases strength and flexibility, and improves balance in older adults. Rehabil Nurs 38(1):37–47

    Article  PubMed  Google Scholar 

  179. Behm DG, Blazevich AJ, Kay AD, McHugh M (2015) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 41(1):1–11

    Article  PubMed  Google Scholar 

  180. Zhou WS, Lin JH, Chen SC, Chien KY (2019) Effects of dynamic stretching with different loads on hip joint range of motion in the elderly. J Sport Sci Med 18(1):52–57

    Google Scholar 

  181. Reid JC, Greene R, Young JD, Hodgson DD, Blazevich AJ, Behm DG (2018) The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties. Eur J Appl Physiol 118(7):1427–1445

    Article  PubMed  Google Scholar 

  182. Stathokostas L, Little RMD, Vandervoort AA, Paterson DH (2012) Flexibility training and functional ability in older adults: a systematic review. J Aging Res 2012:306818. https://doi.org/10.1155/2012/306818

    Article  PubMed  PubMed Central  Google Scholar 

  183. Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(Suppl 2):ii7–ii11

    Google Scholar 

  184. Dunsky A, Zeev A, Netz Y (2017) Balance performance is task specific in older adults. Biomed Res Int 2017:6987017. https://doi.org/10.1155/2017/6987017

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kojima G (2015) Frailty as a predictor of future falls among community-dwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc 16(12):1027–1033

    Article  PubMed  Google Scholar 

  186. Silsupadol P, Shumway-Cook A, Lugade V, van Donkelaar P, Chou LS, Mayr U et al (2009) Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Arch Phys Med Rehabil 90(3):381–387

    Article  PubMed  PubMed Central  Google Scholar 

  187. Azadian E, Torbati HRT, Kakhki ARS, Farahpour N (2016) The effect of dual task and executive training on pattern of gait in older adults with balance impairment: a randomized controlled trial. Arch Gerontol Geriatr 62:83–89

    Article  PubMed  Google Scholar 

  188. Zhong D, Xiao Q, He M, Li Y, Ye J, Zheng H et al (2019) Tai Chi for improving balance and reducing falls: a protocol of systematic review and meta-analysis. Medicine (Baltimore) 98(17):e15225. https://doi.org/10.1097/MD.0000000000015225

    Article  Google Scholar 

  189. Huang ZG, Feng YH, Li YH, Lv CS (2017) BMJ open systematic review and meta-analysis: Tai Chi for preventing falls in older adults. BMJ Open 7(2):e013661. https://doi.org/10.1136/bmjopen-2016-013661

  190. Saravanakumar P, Higgins IJ, Van Der Riet PJ, Marquez J, Sibbritt D (2014) The influence of tai chi and yoga on balance and falls in a residential care setting: a randomised controlled trial. Contemp Nurse 48(1):76–87

    Article  PubMed  Google Scholar 

  191. Sivaramakrishnan D, Fitzsimons C, Kelly P, Ludwig K, Mutrie N, Saunders DH et al (2019) The effects of yoga compared to active and inactive controls on physical function and health related quality of life in older adults- systematic review and meta-analysis of randomised controlled trials. Int J Behav Nutr Phys Act 16(1):33. https://doi.org/10.1186/s12966-019-0789-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by FONDECYT - Chile (Grant Number 11180949) and Dirección de Investigación (DIUFRO) of Universidad de La Frontera (Grant Number DI18-0068). FAPESP, CNPq, and CAPES support the Rui Curi Research team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Nasri Marzuca-Nassr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzuca-Nassr, G.N., SanMartín-Calísto, Y., Guerra-Vega, P., Artigas-Arias, M., Alegría, A., Curi, R. (2020). Skeletal Muscle Aging Atrophy: Assessment and Exercise-Based Treatment. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_6

Download citation

Publish with us

Policies and ethics