Skip to main content

Effect of Short Chain Fatty Acids on Age-Related Disorders

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Abstract

Recent studies have indicated a prominent role of intestinal microbiota in regulation of several physiological aspects of the host including development and activation of the immune system and control of metabolism. In this review, we focused our discussion on bacterial metabolites produced from dietary fiber fermentation called short-chain fatty acids, which act as a link between the microbiota and host cells. Specifically, we described how modifications in their intestinal levels are associated with development of age-related pathologies including metabolic diseases and type 2 diabetes, hypertension, cardiovascular and neurodegenerative diseases. We also highlight their impact on the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sekirov I, Russell SL, Caetano M, Antunes L, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  CAS  PubMed  Google Scholar 

  2. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):105–108

    Article  CAS  PubMed  Google Scholar 

  3. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL (2019) Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570(7762):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolf AR, Wesener DA, Cheng J, Houston-Ludlam AN, Beller ZW, Hibberd MC et al (2019) Bioremediation of a common product of food processing by a human gut bacterium. Cell Host Microbe 26(4):463–477.e8

    Google Scholar 

  5. Chen H, Nwe PK, Yang Y, Rosen CE, Bielecka AA, Kuchroo M et al (2019) A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177(5):1217–1231.e18

    Google Scholar 

  6. Hillman ET, Lu H, Yao T, Nakatsu CH (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32(4):300–313

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR et al (2019) Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25(6):789–802.e5

    Google Scholar 

  9. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1). pii: E14. https://doi.org/10.3390/microorganisms7010014

  10. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215

    Article  CAS  PubMed  Google Scholar 

  11. Nicolas GR, Chang PV (2019) Deciphering the chemical lexicon of host–gut microbiota interactions. Trends Pharmacol Sci 40(6):430–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345

    Article  CAS  PubMed  Google Scholar 

  13. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3(10):858–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S et al (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 10(1):760. https://doi.org/10.1038/s41467-019-08711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fachi JL (2019) Role of microbiota-derived metabolites, the short-chain fatty acids, on innate lymphoid cells. Sci Rep Res Internships Abroad. https://bv.fapesp.br/en/bolsas/178988/role-of-microbiota-derived-metabolites-the-short-chain-fatty-acids-on-innate-lymphoid-cells/

  16. Sorbara MT, Dubin K, Littmann ER, Moody TU, Fontana E, Seok R et al (2019) Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med 216(1):84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chun E, Lavoie S, Fonseca-Pereira D, Bae S, Michaud M, Hoveyda HR et al (2019) Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51(5):871–884.e6

    Google Scholar 

  18. Galvão I, Tavares LP, Corrêa RO, Fachi JL, Rocha VM, Rungue M et al (2018) The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front Immunol 9:142. https://doi.org/10.3389/fimmu.2018.00142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J et al (2018) Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48(5):992–1005.e8

    Google Scholar 

  20. Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP, dos Santos AÁ et al (2019) Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun 10(1):1–17

    Article  CAS  Google Scholar 

  21. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol 5(4):e73. https://doi.org/10.1038/cti.2016.17

    Article  CAS  Google Scholar 

  22. Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E et al (2018) Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun 9(1):105. https://doi.org/10.1038/s41467-017-02651-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim M, Qie Y, Park J, Kim CH (2017) Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20(2):202–214

    Article  CAS  Google Scholar 

  24. Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K et al (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285–297.e5

    Google Scholar 

  25. Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL et al (2017) Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357(6351):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  28. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094

    Article  PubMed  Google Scholar 

  29. Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15(5):288–298

    Article  PubMed  Google Scholar 

  30. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185

    Article  CAS  PubMed  Google Scholar 

  31. Goldfine AB, Shoelson SE (2017) Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J Clin Invest 127(1):83–93

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ridaura VK, Faith JJ, Rey FE, Cheng J, Alexis E, Kau AL et al (2014) Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science 341(6150):1241214. https://doi.org/10.1126/science.1241214

    Article  CAS  Google Scholar 

  33. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916.e7

    Google Scholar 

  34. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U et al (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51(4):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vinolo MAR, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR et al (2012) Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303(2):E272–E282

    Article  CAS  PubMed  Google Scholar 

  37. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  38. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754

    Article  CAS  PubMed  Google Scholar 

  39. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE et al (2019) Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep 9(1):12515. https://doi.org/10.1038/s41598-019-48775-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Silva A, Bloom SR (2012) Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6(1):10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611. https://doi.org/10.1038/ncomms4611

    Article  CAS  PubMed  Google Scholar 

  43. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101(4):1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M et al (2018) The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  Google Scholar 

  45. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S et al (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734. https://doi.org/10.1038/ncomms7734

    Article  CAS  PubMed  Google Scholar 

  46. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383

    Article  CAS  PubMed  Google Scholar 

  47. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL et al (2016) Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534(7606):213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S et al (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173–177

    Article  CAS  PubMed  Google Scholar 

  49. Word Health Organization (2015) About cardiovascular disease. In: Cardiovascular disease. https://www.who.int/cardiovascular_diseases/about_cvd/en/. Accessed 02 Nov 2019

  50. Word Health Organization (2018) The top 10 causes of death. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 02 Nov 2019

  51. Guimarães RM, De Araújo Andrade SSC, Bahia CA, Machado EL, De Oliveira MM, Jacques FVL (2015) Regional differences in cardiovascular mortality transition in Brazil, 1980 to 2012. Rev Panam Salud Publica 37(2):83–89

    PubMed  Google Scholar 

  52. Tang WHW, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124(10):4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang WHW, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8(1):845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245. https://doi.org/10.1038/ncomms2266

    Article  CAS  PubMed  Google Scholar 

  56. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Sahay B et al (2016) Gut microbiota dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    Article  CAS  Google Scholar 

  57. Gómez-Guzmán M, Toral M, Romero M, Jiménez R, Galindo P, Sánchez M et al (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59(11):2326–2336

    Article  PubMed  CAS  Google Scholar 

  58. Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R et al (2018) Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res 123(9):1091–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown JM, Hazen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 66:343–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang T, Magee KL, Colon-Perez LM, Larkin R, Liao YS, Balazic E et al (2019) Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol (Oxf) 226(2):e13256. https://doi.org/10.1111/apha.13256

    Article  CAS  Google Scholar 

  61. Hsu CN, Chang-Chien GP, Lin S, Hou CY, Tain YL (2019) Targeting on gut microbial metabolite trimethylamine-N-oxide (TMAO) and short chain fatty acid to prevent maternal high-fructose diet-induced developmental programming of hypertension in adult male offspring. Mol Nutr Food Res 63(18):e1900073. https://doi.org/10.1002/mnfr.201900073

  62. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J et al (2013) Olfactory receptor responding to gut microbiota derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110(11):4410–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin N Am 46(1):77–89

    Article  Google Scholar 

  64. Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spielman LJ, Gibson DL, Klegeris A (2018) Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120:149–163

    Article  CAS  PubMed  Google Scholar 

  66. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759

  68. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. DMM Dis Model Mech 10(5):499–502

    Article  CAS  PubMed  Google Scholar 

  69. Erkkinen MG, Kim M, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4). pii: a033118. https://doi.org/10.1101/cshperspect.a033118

  70. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360

    Article  CAS  PubMed  Google Scholar 

  71. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    Article  PubMed  Google Scholar 

  72. Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K et al (2018) Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Park Relat Disord 50:104–107

    Article  Google Scholar 

  73. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Park Relat Disord 32:66–72

    Article  Google Scholar 

  74. St. Laurent R, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390

    Article  CAS  PubMed  Google Scholar 

  75. Kidd SK, Schneider JS (2010) Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Res 1354:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paiva I, Pinho R, Pavlou MA, Hennion M, Wales P, Schütz AL et al (2017) Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum Mol Genet 26(12):2231–2246

    Article  CAS  PubMed  Google Scholar 

  77. Sharma S, Taliyan R, Singh S (2015) Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: modulation of histone deacetylase activity. Behav Brain Res 291:306–314

    Article  CAS  PubMed  Google Scholar 

  78. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480.e12

    Google Scholar 

  79. Long ZM, Zhao L, Jiang R, Wang KJ, Luo SF, Zheng M et al (2015) Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer’s disease model. CNS Neurosci Ther 21(11):887–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A (2011) Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 26(1):187–197

    Article  CAS  PubMed  Google Scholar 

  81. Kong Y, Jiang B, Luo X (2018) Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 13:1117–1128

    Article  CAS  PubMed  Google Scholar 

  82. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028. https://doi.org/10.1038/srep30028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones L, Hughes A (2011) Pathogenic mechanisms in Huntington’s disease. Int Rev Neurobiol 98:373–418

    Article  CAS  PubMed  Google Scholar 

  84. Kong G, Cao K-AL, Judd LM, Li S, Renoir T, Hannan AJ (2018) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 5:104268. https://doi.org/10.1016/j.nbd.2018.09.001. [Epub ahead of print]

    Article  CAS  Google Scholar 

  85. Zhang YG, Wu S, Yi J, Xia Y, Jin D, Zhou J et al (2017) Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther 39(2):322–336

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chou AH, Chen SY, Yeh TH, Weng YH, Wang HL (2011) HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol Dis 41(2):481–488

    Article  CAS  PubMed  Google Scholar 

  87. Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK et al (2017) Microbes and Cancer. Annu Rev Immunol 35:199–228

    Article  CAS  PubMed  Google Scholar 

  88. Tsilimigras MCB, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2:17008. https://doi.org/10.1038/nmicrobiol.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  90. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  91. American Cancer Society (2019) Cancer facts & figures 2019. In: CA: A Cancer Journal for Clinicians. American Cancer Society. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf. Accessed 15 Oct 2019

  92. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA (2019) The microbiome, cancer, and cancer therapy. Nat Med 25(3):377–388

    Article  CAS  PubMed  Google Scholar 

  93. Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S et al (2019) Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11(1). pii: E38. https://doi.org/10.3390/cancers11010038

  94. Triff K, McLean MW, Callaway E, Goldsby J, Ivanov I, Chapkin RS (2018) Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model. Int J Cancer 143(6):1402–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen HM, Yu YN, Wang JL, Lin YW, Kong X, Yang CQ et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97(5):1044–1052

    Google Scholar 

  96. Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y et al (2019) Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 234(10):17023–17049

    Article  CAS  PubMed  Google Scholar 

  97. Bultman SJ (2014) Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res 20(4):799–803

    Article  CAS  PubMed  Google Scholar 

  98. Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M et al (2018) Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes (Basel) 9(2). pii: E102. https://doi.org/10.3390/genes9020102

  99. Foglietta F, Serpe L, Canaparo R, Vivenza N, Riccio G, Imbalzano E et al (2014) Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines. J Pharm Pharm Sci 17(2):231–247

    Article  CAS  PubMed  Google Scholar 

  100. Pattayil L, Thampi H, Saraswathi B (2019) In vitro evaluation of apoptotic induction of butyric acid derivatives in colorectal carcinoma cells. Anticancer Res 39(7):3795–3801

    Article  PubMed  Google Scholar 

  101. Queirós O, Preto A, Pacheco A, Pinheiro C, Azevedo-Silva J, Moreira R et al (2012) Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr 44(1):141–153

    Article  PubMed  CAS  Google Scholar 

  102. Yamamura T, Matsumoto N, Matsue Y, Okudera M, Nishikawa Y, Abiko Y et al (2014) Sodium butyrate, a histone deacetylase inhibitor, regulates lymphangiogenic factors in oral cancer cell line HSC-3. Anticancer Res 34(4):1701–1708

    CAS  PubMed  Google Scholar 

  103. Sivaprakasam S, Prasad PD, Singh N (2016) Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther 164:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K (2017) Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev 75(4):286–305

    Article  PubMed  Google Scholar 

  105. Chen J, Vitetta L (2018) Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer 17(3):e541–e544. https://doi.org/10.1016/j.clcc.2018.05.001

    Article  PubMed  Google Scholar 

  106. Heidor R, Silva K, Festa J, Franco T, Oliveira D, Eduardo P et al (2014) The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage. Toxicol Appl Pharmacol 276(2):129–135

    Article  CAS  PubMed  Google Scholar 

  107. Wei W, Sun W, Yu S, Yang Y, Ai L (2016) Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma 57(10):2401–2408

    Article  CAS  PubMed  Google Scholar 

  108. Kuroiwa-Trzmielina J, De Conti A, Scolastici C, Pereira D, Horst MA, Purgatto E et al (2009) Chemoprevention of rat hepatocarcinogenesis with histone deacetylase inhibitors: efficacy of tributyrin, a butyric acid prodrug. Int J Cancer 124(11):2520–2527

    Article  CAS  PubMed  Google Scholar 

  109. Kuefer R, Hofer MD, Altug V, Zorn C, Genze F, Kunzi-Rapp K et al (2004) Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br J Cancer 90(2):535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Biondo LA, Teixeira AAS, Silveira LS, Souza CO, Costa RGF, Diniz TA et al (2019) Tributyrin in inflammation: does white adipose tissue affect colorectal cancer? Nutrients 11(1). pii: E110. https://doi.org/10.3390/nu11010110

  111. Kang HR, Choi HG, Jeon CK, Lim SJ, Kim SH (2016) Butyrate-mediated acquisition of chemoresistance by human colon cancer cells. Oncol Rep 36(2):1119–1126

    Article  CAS  PubMed  Google Scholar 

  112. Serpa J, Caiado F, Carvalho T, Torre C, Gonçalves LG, Casalou C et al (2010) Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem 285(5):39211–39223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ (2003) Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278(21):18811–18816

    Article  CAS  PubMed  Google Scholar 

  114. Xiao M, Liu YG, Zou MC, Zou F (2014) Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2. Biomed Environ Sci 27(3):197–203

    CAS  PubMed  Google Scholar 

  115. Xiao M, Liu Y, Zou F (2012) Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D. Exp Cell Res 318(1):43–52

    Article  CAS  PubMed  Google Scholar 

  116. Zhang J, Yi M, Zha L, Chen S, Li Z, Li C et al (2016) Sodium butyrate induces endoplasmic reticulum stress and autophagy in colorectal cells: implications for apoptosis. PLoS One 11(1):e0147218. https://doi.org/10.1371/journal.pone.0147218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tang Y, Chen Y, Jiang H, Nie D (2011) Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death Differ 18(4):602–618

    Article  CAS  PubMed  Google Scholar 

  118. Tang Y, Chen Y, Jiang H, Nie D (2011) The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy 7(2):235–237

    Article  PubMed  Google Scholar 

  119. Luo S, Li Z, Mao L, Chen S, Sun S (2019) Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling. J Physiol Biochem 75(1):53–63

    Article  CAS  PubMed  Google Scholar 

  120. Lyssiotis CA, Cantley LC (2014) Acetate fuels the cancer engine. Cell 159(7):1492–1494

    Article  CAS  PubMed  Google Scholar 

  121. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159(7):1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK et al (2014) Acetate dependence of tumors. Cell 159(7):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marques C, Oliveira CSF, Alves S, Chaves SR, Coutinho OP, Côrte-Real M et al (2013) Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis 4:e507. https://doi.org/10.1038/cddis.2013.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pandey SK, Yadav S, Temre MK, Singh SM (2018) Tracking acetate through a journey of living world: evolution as alternative cellular fuel with potential for application in cancer therapeutics. Life Sci 215:86–95

    Article  CAS  PubMed  Google Scholar 

  125. Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M (2019) Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci 20(5). pii: E1214. https://doi.org/10.3390/ijms20051214

  126. Li Q, Cao L, Tian Y, Zhang P, Ding C, Lu W et al (2018) Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics 17(8):1531–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R et al (2018) Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175(3):679–694.e22

    Google Scholar 

  128. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ et al (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165(7):1708–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Johnstone M, Bennett N, Standifer C, Smith A, Han A, Bettaieb A et al (2017) Characterization of the pro-inflammatory cytokine IL-1β on butyrate oxidation in colorectal cancer cells. J Cell Biochem 118(6):1614–1621

    Article  CAS  PubMed  Google Scholar 

  130. Ferro S, Azevedo-Silva J, Casal M, Côrte-Real M, Baltazar F, Preto A (2016) Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget 7(43):70639–70653

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li Q, Ding C, Meng T, Lu W, Liu W, Hao H et al (2017) Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J Pharmacol Sci 135(4):148–155

    Article  CAS  PubMed  Google Scholar 

  132. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zeng H, Taussig DP, Cheng WH, Johnson LAK, Hakkak R (2017) Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutrients 9(1). pii: E25. https://doi.org/10.3390/nu9010025

  134. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2014) Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med 239(3):302–310

    Article  CAS  Google Scholar 

  135. Ryu TY, Kim K, Son MY, Min JK, Kim J, Han TS et al (2019) Downregulation of PRMT1, a histone arginine methyltransferase, by sodium propionate induces cell apoptosis in colon cancer. Oncol Rep 41(3):1691–1699

    CAS  PubMed  Google Scholar 

  136. Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH et al (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon Cancer. PLoS One 6(1):e16221. https://doi.org/10.1371/journal.pone.0016221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu S, Liu L, Chang EB, Wang JY, Raufman JP (2015) Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer 14:1–15

    Article  CAS  Google Scholar 

  138. Xu Z, Tao J, Chen P, Chen L, Sharma S, Wang G et al (2018) Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 through enhanced miR-200c expression. Mol Nutr Food Res 62(6):e1700844. https://doi.org/10.1002/mnfr.201700844

    Article  CAS  PubMed  Google Scholar 

  139. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 128(4):847–856

    Article  CAS  PubMed  Google Scholar 

  140. Kim M, Friesen L, Park J, Kim HM, Kim CH (2018) Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. Eur J Immunol 48(7):1235–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Thangaraju M (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69(7):2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L et al (2014) The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res 74(4):1166–1178

    Article  CAS  PubMed  Google Scholar 

  143. Sun X, Zhu MJ (2018) Butyrate inhibits indices of colorectal carcinogenesis via enhancing α-ketoglutarate-dependent DNA demethylation of mismatch repair genes. Mol Nutr Food Res 62(10):e1700932. https://doi.org/10.1002/mnfr.201700932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang Y, Zhou L, Bao YL, Wu Y, Yu CL, Huang YX et al (2010) Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact 185(3):174–181

    Article  CAS  PubMed  Google Scholar 

  145. Lazarova DL, Chiaro C, Wong T, Drago E, Rainey A, O’Malley S et al (2013) CBP activity mediates effects of the histone deacetylase inhibitor butyrate on WNT activity and apoptosis in colon cancer cells. J Cancer 4(6):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sarah de Oliveira and Patrícia Brito Rodrigues are supported by fellowships from São Paulo Research Foundation (FAPESP #2019/11662-0 and 2019/14342-7). Mariana Portovedo and Mariane Fernandes Font are supported by fellowships from CAPES. This study is also supported by the National Council for Scientific and Technological Development (CNPq) (304433/2018-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Ramirez Vinolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, M.F., de Oliveira, S., Portovedo, M., Rodrigues, P.B., Vinolo, M.A.R. (2020). Effect of Short Chain Fatty Acids on Age-Related Disorders. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_4

Download citation

Publish with us

Policies and ethics